Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik gọi như này nhé, từ trung điểm M của BC, kẻ vuông góc với BC cắt AC tại N và AB tại K.
Bài làm
a) Xét tam giác ABC vuông tại A có:
\(BC=\sqrt{AB^2+AC^2}\)
hay \(BC=\sqrt{5^2+12^2}=\sqrt{25+144}\)
=> \(BC=\sqrt{169}=13\left(cm\right)\)
=> \(BM=MC=\frac{BC}{2}=\frac{13}{2}=6,5\left(cm\right)\)
Xét tam giác ABC và tam giác MNC có:
\(\widehat{BAC}=\widehat{NMC}=90^0\)
\(\widehat{C}\)chung
=> Tam giác ABC ~ tam giác MNC ( g-g )
=> \(\frac{AB}{MN}=\frac{AC}{MC}\)
hay \(\frac{5}{MN}=\frac{12}{6,5}\Rightarrow MN=\frac{65}{24}\left(cm\right)\)
b) Xét tam giác ABC vuông tại A
Đường cao AH
=> \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
hay \(\frac{1}{AH^2}=\frac{1}{5^2}+\frac{1}{12^2}\)
=> \(\frac{1}{AH^2}=\frac{1}{25}+\frac{1}{144}\)
=> \(\frac{1}{AH^2}=\frac{169}{3600}\)
=> \(AH^2=\frac{3600}{169}\)
=> \(AH=\sqrt{\frac{3600}{169}}=\frac{60}{13}\)( cm )
Xét tam giác AHB vuông tại H có:
Theo Pytago có:
\(BH^2=AB^2-AH^2\)
hay \(BH^2=5^2-\frac{3600}{169}\)
=> \(BH^2=25-\frac{3600}{169}\)
=>\(BH^2=\frac{625}{169}\)
=> \(BH=\frac{25}{13}\)( cm )
Ta có: BH + HC = BC
hay \(\frac{25}{13}+HC=13\)
=> \(HC=13-\frac{25}{13}\)
=> \(HC=\frac{144}{13}\)
BÀI LÀM:
a) Vì tam giác ABC vuông tại A
Theo định lý Py-ta-go, ta có
BC2 = AB2 + AC2
=> BC2 = 52 + 122
=> BC2 = 25 + 144
=> BC2 = 169
=> BC = 13
Vì M là trung điểm của BC
=> BM = CM = BC / 2 = 13/2 = 6,5
Xét tam giác ABC và tam giác MNC có
Góc BAC = góc NMC = 90o (tam giác ABC vuông tại A, MN vuông góc với BC)
Góc C là góc chung
=> Tam giác ABC đồng dạng với tam giác MNC (g.g)
\(=>\frac{AB}{MN}=\frac{AC}{MC}\)
\(=>\frac{5}{MN}=\frac{12}{6,5}\)
\(=>MN=\frac{6,5.5}{12}=\frac{65}{24}\)
b) Vì tam giác ABC vuông tại A có AH vuông góc với BC
AB2 = BH.BC
\(=>BH=\frac{AB^2}{BC}\)
\(=>BH=\frac{5^2}{13}\)
\(=>BH=\frac{25}{13}\)
Vì BH + HC = BC
=> HC = BC - BH
=> \(HC=13-\frac{25}{13}\)
=> \(HC=\frac{144}{13}\)
Vì tam giác ABC vuông tại A có AH vuông góc với BC
=> AH2 = BH.HC
=> \(AH^2=\frac{25}{13}.\frac{144}{13}\)
=> \(AH^2=\frac{3600}{169}\)
=> \(AH=\sqrt{\frac{3600}{169}}\)
=> \(AH=\frac{60}{13}\)
Cậu chưa cho câu hỏi câu b) nhưng có phải là: "Gọi AH là đường cao thuộc BC. Tính HB, AH và HC", đại loại vậy đúng hăm?
Bài này có thể chia 2 trường hợp nhưng tớ mới làm trường hợp MN cắt AC còn MN cắt AB thì để tớ trả lời sau nhen~
\(b,\) Gọi O là giao điểm ED và AH
\(\Rightarrow OA=OD=OE=OH\\ \Rightarrow\widehat{OEH}=\widehat{OHE}\\ \Rightarrow\widehat{NEH}=\widehat{NHE}\left(\widehat{OEH}+\widehat{NEH}=\widehat{NHE}+\widehat{OHE}=90\right)\\ \Rightarrow NE=EH\left(\Delta NEH.cân\right)\left(1\right)\)
Ta có \(\widehat{NEH}+\widehat{NEC}=90;\widehat{NHE}+\widehat{ECH}=90\Rightarrow\widehat{NEC}=\widehat{EHC}\)
\(\Rightarrow NE=NC\left(\Delta NEC.cân\right)\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow NC=NH\)
\(Cmtt\Leftrightarrow\Delta HMD;\Delta MDB.cân\Leftrightarrow MH=MB\left(=MD\right)\)
\(c,\) Xét tam giác HBD và CEH vuông tại E,D có \(DM=\dfrac{1}{2}HB=2\left(cm\right);EN=\dfrac{1}{2}CH=3\left(cm\right)\)
Áp dụng HTL vào tam giác ABC vuông tại A
\(AH^2=BH\cdot HC=4\cdot9=36\\ \Leftrightarrow AH=6\left(cm\right)\\ \Leftrightarrow DE=AH=6\left(cm\right)\left(hcn.AEHD\right)\)
\(S_{DENM}=\dfrac{1}{2}DE\cdot\left(MD+EN\right)=\dfrac{1}{2}\cdot6\cdot5=15\left(cm^2\right)\)
a: \(AH=2\sqrt{6}\left(cm\right)\)
\(AB=2\sqrt{10}\left(cm\right)\)
\(AC=2\sqrt{15}\left(cm\right)\)
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{15}\left(cm\right)\\AB=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
hay BC=13(cm)
Xét ΔMBN vuông tại M và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔMBN\(\sim\)ΔABC(g-g)
Suy ra: \(\dfrac{MN}{AC}=\dfrac{BM}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(MN=\dfrac{BM\cdot AC}{AB}=\dfrac{6.5\cdot12}{6}=6.5\cdot2=13\left(cm\right)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot CB=AB\cdot AC\)
\(\Leftrightarrow AH\cdot13=5\cdot12=60\)
hay \(AH=\dfrac{60}{13}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=5^2-\left(\dfrac{60}{13}\right)^2=\dfrac{625}{169}\)
hay \(BH=\dfrac{25}{13}\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên \(CH=BC-BH=13-\dfrac{25}{13}=\dfrac{144}{13}\left(cm\right)\)