K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2020

P Q R H K E F

a) Xét tam giác PQH và tam giác PRH có : 

\(PQ=PR\left(gt\right)\)

\(PH\)chung

\(QH=RH\left(gt\right)\)

\(=>\) Tam giác PQH = tam giác PRH (c-c-c)

b, Ta có tam giác PQR cân tại P và có đường trung tuyến PH

Suy ra PH là đường trung tuyến đồng thời là đường cao 

\(=>PH\perp QR\)

c,Ta có : \(\hept{\begin{cases}QH=RH\\KH=PH\end{cases}}\)

\(=>\)Tứ giác PQKR là hình bình hành 

\(=>\)\(RK=PQ\)

Mà theo giả thiết : \(PQ=PR\)

Suy ra : \(PR=PK\)

3 tháng 1 2019

a, CM tam giác ACH = tam giác KCH

Xét tam giác ACH và tam giác KCH, có:

- AH = KH (H là trung điểm AK)

- góc AHC = góc KHC = 90 độ

- cạnh HC chung

=> tam giác ACH = tam giác KCH (đpcm)

b, Gọi E là trung điểm của BC. Trên tia đối của tía EA lấy điểm D sao cho AE=DE. CM: BD song song với AC

Xét tam giác AEC và tam giác DEB, có:

- AE = DE (giả thiết)

- BE = CE (E là trung điểm BC)

- góc AEC = góc DEB (2 góc đối nhau)

=> tam giác AEC = tam giác DEB

=> góc EAC = góc EDB, góc ECA = góc EBD (góc tương ứng của 2 tam giác bằng nhau)

=> DB // AC  (so le trong) (đpcm)

c, EB là phân giác của góc AEK

Xét tam giác EHA và tam giác EHK, có:

- EH chung

- góc EHA = góc EHK = 90 độ

- HA = HK (H là trung điểm AK)

=> tam giác EHA = tam giác EHK

=> EA = EK => tam giác EAK cân tại E

mà H là trung điểm AK

=> EH là trung tuyến, trung tực, phân giác của tam giác cân EAK

Ta có EH là phân giác của góc AEK

mà B,H,E thẳng hàng

=> EB là phân giác của góc AEK (đpcm)

d, Gọi F là trung điểm của KD. I là giao điểm BD và KC. CM: A,F,I thẳng hàng

(chưa nghĩ ra)

15 tháng 1 2017

A B C D M H K

xét tam giác AMB và tam giác CMD có

AM = MC (gt)

góc AMB = góc CMD ( đối đỉnh )

BM = MD (gt)

do đó tam giác AMB = tam giác CMD (c.g.c)

11 tháng 12 2017

giúp minh câu c nha mình cũng bí bài này