Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác oam và tam giác obm có:
OA = OB ( GT )
AM = MB ( GT )
OM chung
=> tam giác oam = tam giác obm ( c.c.c)
b) ta có oam= obm( theo a )
=> oam = obm (2 góc t.ư)
=> oam+ obm= 180°(2 góc kề bù)
=> oam= obm = 180° : 2 = 90°
=> om vuông góc ab
c) xét tam giác amd và tam giác bmd có
am= bm(gt)
da=db(gt)
md chung
=> tam giác amd= tam giác bmd(c.c.c)
=> dam= dbm( 2 góc t.ư)
=> dam+dbm=180° (2góc kề bù)
=> dam= dbm= 180° : 2 = 90°
=> md vuông góc ab
Mà om vuông góc ab ( theo b )
md vuông góc ab(cmt)
Mà M thuộc od => M,O,D thẳng hàng
Bn tự vẽ hình hộ mk nhé!
a: Xét ΔOAM và ΔOBM có
OA=OB
AM=BM
OM chung
Do đó: ΔOAM=ΔOBM
b: Ta có: ΔOAB cân tại O
mà OM là đường trung tuyến
nên OM là đường cao
Mình chỉ có thể chỉ bạn đc câu a thôi nha mong bạn thông cảm.
Tam giác OAM và Tam giác OBM có:
OA=OB
AM=MB
OM là cạnh chung
=> tam giác OAM=tam giác OBM. (c.c.c)
\(a,\left\{{}\begin{matrix}OA=OB\\\widehat{AOD}=\widehat{BOD}\left(OD\text{ là p/g}\right)\\OD\text{ chung}\end{matrix}\right.\Rightarrow\Delta OAD=\Delta OBD\left(c.g.c\right)\\ b,\Delta OAD=\Delta OBD\Rightarrow\widehat{ODA}=\widehat{ODB}\\ \text{Mà }\widehat{ODB}+\widehat{ODA}=180^0\\ \Rightarrow\widehat{ODB}=\widehat{ODA}=90^0\\ \Rightarrow OD\bot AB\)
Mình không vẽ hình, bạn tự vẽ nhé!
a) M là trung điểm của BC \(\Rightarrow BM=MC\)
Xét \(\Delta BAM\)và \(\Delta CDM\)có:
MA=MD ( giả thiết )
\(\widehat{BMA}=\widehat{CMD}\)( tính chất đối đỉnh )
BM=MC ( chứng minh trên )
\(\Rightarrow\Delta BAM=\Delta CDM\)( c.g.c )
b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:
MA=MD ( giả thiết )
\(\widehat{BMD}=\widehat{CMA}\)( tính chất đối đỉnh )
BM=MC ( chứng minh trên )
\(\Rightarrow\Delta ACM=\Delta DBM\)( c.g.c )
\(\Rightarrow AC=BD\)( 2 cạnh tương ứng )
\(\Rightarrow\widehat{MAC}=\widehat{MDB}\)( 2 góc tương ứng ) ở vị trí so lê trong
\(\Rightarrow\)AC//BD
c) Đề bài không rõ ràng mình không làm được
d) Đề bài không rõ ràng mình không làm được
Chúc bạn học tốt!