K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

Bạn tự vẼ hình nha
Gọi N là giao điểm của CE và AB
Xét CME và BMD có
MB=MC(giả thiết )
MD=ME(giả thiết)
BMD=CME(2 góc đối đỉnh)
Do đó CME=BMD(c.g.c)
=>MBD=MCE => BD // CE
=> DBN+CNB=180 (2 gõc trong cùng phía bù nhau)
=>CNB=180-CNB=180-90=90
Vậy CE vuông góc với AB

1 tháng 12 2017

xét tam giác EMC và tam giác DMB

có góc EMC=góc DMB

     ME=MD(GT)

     MB=MC (GT)

=>tam giác EMC=Tam giác DMB(c.g.c)

=>goc CEM= goc DBM (2goc tuong ung)

ma go CEM va Goc DBM la 2 goc  SLT

=>AC song song BD

và Góc ABD=90 do (GT)

=> góc AHC =90 do ( 2goc đồng vị ) 

vậy CE vuông góc với AB tại H

19 tháng 11 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Xét ΔBMD và ΔCME có:

BM = MC (vì M là trung điểm BC)

MD = ME (giả thiết)

∠BMD = ∠EMC (hai góc đối đỉnh)

⇒ ΔBMD = ΔCME (c.g.c)

⇒ ∠D = ∠MEC (hai góc t.ư)

Mà hai góc này ở vị trí so le trong nên suy ra BD // CE.

Ta có AB ⊥ BD (giả thiết) và BD // CE (chứng minh trên) nên AB ⊥ CE

24 tháng 11 2015

chtt còn ko thì tick mình giải cho

27 tháng 9 2015

Giúp mình bài này với bạn!!!

http://olm.vn/hoi-dap/question/213159.html

11 tháng 6 2017

Xét \(\Delta BMD \)\(\Delta CME \) có:

ME = MD (gt)

BM = CM ( vì M là trung điểm của BC)

\(\widehat{DMB}=\widehat{EMC}\) (đối đỉnh)

Do đó: \(\Delta BMD \) = \(\Delta CME \) (c.g.c)

=> \(\widehat{BDM}=\widehat{MEC}\) (2 góc tương ứng)

mà 2 góc \(\widehat{BMD}\)\(\widehat{MEC}\)nằm ở vị trí so le trong

=> BD // CE.

Ta có:\(AB\perp BD\) , BD // CE

=> AB \(\bot\) CE.

10 tháng 8 2016

Bạn tự vẼ hình nha

Gọi N là giao điểm của CE và AB

Xét CME và BMD có

MB=MC(giả thiết )

MD=ME(giả thiết)

BMD=CME(2 góc đối đỉnh)

Do đó CME=BMD(c.g.c)

=>MBD=MCE => BD // CE

=> DBN+CNB=180 (2 gõc trong cùng phía bù nhau)

=>CNB=180-CNB=180-90=90

Vậy CE vuông góc với AB

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

2 tháng 12 2016

Giúp mk với

3 tháng 12 2016

mk vẽ hình r AB//CE viết lại đầu bài