Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét ΔDAC và ΔBAE ta có:
AB=AD (ΔABD vuông cân ở A)
AC=AE (ΔACE vuông cân ở A)
DAC^=BAE^=BAC^+90o
→ΔDAC=ΔBAE (cgc)
→DC=BE (2 cạnh tương ứng) (1)
- Ta có P;M;N là trung điểm BC;BD;EC nên
+ PN là đường trung bình ΔBEC→PN=EB/2 (2);PN//EB
+ PM là đường trung bình ΔBCD→PM=DC/2 (3);PM//DC
+ từ (1); (2); (3) ta có PN=PM (*)
+ M1^M1^ là góc ngoài tại đỉnh M của ΔEMC nên M1^=E1^+MCE^=E1^+C1^+C2^
Mà C2^=E2^ (ΔDAC=ΔBAE). Thay vào ta có
M1^=E1^+C1^+E2^=AEC^+C1^=90o (vì ΔAEC vuông cân ở A)
→DC⊥BE→DC⊥BE. Mà BE//PN→PN⊥DC
Mà PM//DC→PN⊥PM→MPN^=90o (*)(*)
+ Từ (*) và (*)(*) ta có ΔMPN vuông cân ở P (đpcm)
Bạn tự vẽ hình nhé. Mình giải thôi.
1)Bạn chia 2 TH.
a) Góc MDB lớn hơn hoac bằng 60 độ
=>MD<MB mà ME>MC=MB
=>MD<ME.
b) Góc MDB nhỏ hơn 60 độ.
=> MD giao CA tại E .
Dễ dàng cminh DM<ME.
2) Ta có tam giác ABC cân tại A => AI là phân giác cũng là trung trực BC
=> AI trung trực BC. Mà AO là trung trục BC.
=> AI trùng AO.
=>OI là trung trực BC
Đè bài cần xem lại nhé.
3)Ta có góc B > góc C => AC>AB
Có AC đối dienj góc vuông trong tam giác vuông AEC => AC>CE
Tương tự AB>BD
Tất cả các điều => AC-AB>CE-BD
Gọi O là giao điểm DC và BE, I là giao điểm DC và AB
Ta có
góc DAB= góc EAC (=90)
góc BAC= góc BAC( góc chung)
-> góc DAB+ góc BAC= góc EAC+ góc BAC
-> góc DAC= góc BAE
Xét tam giác DAC và tam giác BAE ta có
AD=AB ( tam giác ABD vuông cân tại A)
AC=AE ( tam giác AEC vuông cân tại A)
góc DAC=góc BAE ( cmt)
-. tam giac DAC= tam giac BAE (c-g-c)
-> góc DAI= góc IBO ( 2 góc tương ứng)
ta có
góc DAI+ góc DIA=90 ( tam giác DAI vuông tại A)
góc DAI= góc IBO (cmt)
góc DIA= góc BIO ( 2 góc đối đỉnh)
--> góc BIO+góc IBO =90
Xét tam giác BIO ta có
góc BIO + góc IBO + góc BIO=180 ( tổng 3 góc trong tam giác)
90+ goc BIO=180
góc BIO=180-90=90
=> BE vuông góc DC tại O
Xét tam giác DBC ta có
M là trung điểm BD (gt)
P là trung điểm BC (gt)
-> MP la đường trung bình tam giác DBC
-> MP// DC và MP=1/2 DC
cmtt PN là đường trung bình tam giác BEC
-> PN//BE và PN=1/2BE
ta có
DC vuông góc BE tại O (cmt)
DC//MP (cmt)
-> MP vuông góc BE
mà BE// PN (cmt)
nên MP vuông góc PN tại P
--> tam giác MNP vuông tại P (1)
ta có
MP=1/2 DC (cmt)
PN=1/2BE (cmt)
DC=BE ( tam giac DAC = tam giac BAE)
--> MP=PN (2)
từ (1) và (2) suy ra tam giac MNP vuông cân tại P
a ) Tam giác cân ABC có BD , CE là đường cao => BD , CE cũng là đường trung tuyến ứng với cạnh AC , AB
mà AB = AC => AE = AB = AD = AC
Xét \(\Delta ADB\)và \(\Delta AEC\)có :
AB = AC ( do tam giác ABC cân )
\(\widehat{ADB}=\widehat{AEC}\) \(\left(=90^o\right)\)( do \(BD\perp AC\), \(CE\perp AB\))
AD = AE ( cm trên )
nên \(\Delta ADB=\Delta AEC\)( c.g.c )
b ) Do \(\Delta ABC\) cân => \(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{ABC}=\widehat{ABD}+\widehat{DBC}\)
\(\widehat{ACB}=\widehat{ACE}+\widehat{ECB}\)
Mà \(\widehat{ABD}=\widehat{ACE}\)( do \(\Delta ADB=\Delta AEC\)phần a ) => \(\widehat{DBC}=\widehat{ECB}\)
=> \(\Delta BOC\)cân
Mấy phần còn lại tự làm , hình dễ tự vẽ
A)Vì tam giác ABC cân tại A
=> ABC = ACB
=> AB = AC
Xét tam giác AEC (AEC = 90) và tam giác ADB(ADB=90) ta có :
AB = AC
Góc A chung
=> tam giác AEC = tam giác ADB ( ch-gn)
B) Tự xét tam giác ECB = tam giác DBC (cgv-gn)
=> EB = DC tương ứng
Xét tam giác EBO vuông tại E và tam giác DCO vuông tại D ta có :
EB = DC
EOB = DOC (đối đỉnh)
=> 2 tam giác trên bằng nhau
=> BO = OC tương ứng
=> tam giác BOC cân tại B
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:
AB = AC (ΔABC cân tại A)
∠BAD chung
⇒ ΔABD = ΔACE (cạnh huyền - góc nhọn)
⇒ BD = CE (hai cạnh tương ứng)
Vậy BD = CE
ΔDMC cân tại M
ΔDMB cân tại M
ΔEMB cân tại M
ΔEMC cân tại M
ΔEMD cân tại M