Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(AH\perp BC\) \(\Rightarrow AH< AB;AH< AC\)
\(\Rightarrow2.AH< AB+AC\Leftrightarrow AH< \dfrac{AB+AC}{2}\)
b) Theo câu a ta có: \(AH< \dfrac{AB+AC}{2}\) \(\left(1\right)\)
Tương tự ta có: \(BK< \dfrac{AB+BC}{2}\) \(\left(2\right)\)
\(CI< \dfrac{CA+CB}{2}\) \(\left(3\right)\)
Từ \(\left(1\right)\),\(\left(2\right)\) và \(\left(3\right)\) \(\Rightarrow AH+BK+CI< AB+AC+BC\)
Cho tam giác nhọn có AB<AC;AH vuông góc với BC( H thuộc BC )
a) So sánh HB với CH; AB với AH. So sánh BH với AB+AC với BC.
b) Kẻ BC vuông góc với AC ( K thuộc AC). Gọi I là giao điểm của AH và BK. Chứng minh CI vuông góc với AB
Xét tam giác BAH
Có B+BAH=900(vì tam giác BAH vuông tại H)
500+BAH=900
=>BAH=900-500
=>BAH=400
Xét tam giác HAC
Có C+HAC=900(Tam giác HAC vuông tại H)
400+HAC= 900
HAC=900-400
HAC=500
B)Xét tam giác ABH
Có AB2 = HB2+AH2(Theo định lý Pi-ta-go)
AB2=32+42
AB2=25=52
AB=5
Xét tam giác CAH
Có AC2=AH2+HC2 (Theo định lý Pi-ta-go)
AC2=42+42=32=
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(BK=\sqrt{AB^2-AH^2}=9\left(cm\right)\)
CK=BC-BK=16(cm)
a, Vẽ tia HM là tia đối của tia AH , sao cho BH =HC
Xét tg AHB và AHC
Có : H là góc chung
BH=HC
AH=HM
Vậy : tg AHB= tg AHC
Nên : MC=AB ( tg AHB = tg AHC)
Có : AM < AC+CM (bdt)
Mà : AM=2AH và AC+CM=AC+AB
Nên : 2AH=AC+AB
=> AH=AC+B/2
Vậy đpcm ở câu a
b, từ rồi mk lm
Nên :2AH<AC+AB
=> AH=AC+AB/2
Vậy đpcm ở câu a