K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2020

Hướng dẫn a,b

Tự vẽ hình

a) M , N là trung điểm AB , AC => MN là đường trung bình của tam giác ABC

=> MN//BC => DN//BC . Mà BD// NC => Tứ giác BDNC là hbh

b) Có \(\widehat{NCH}=\widehat{NDB}\) ( hình bình hành )

Tam giác AHC vuông có trung tuyến HN = 1/2 AC = NC => Tam giác NHC cân => \(\widehat{NCH}=\widehat{NHC}\)

=> \(\widehat{NDB}=\widehat{NHC}\)

Mà NHC = NHD (so le trong ) = > NHD = NBD

=> BDNH là hình thang cân

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

Xét tứ giác BDNC có 

DN//BC

BD//NC

Do đó: BDNC là hình bình hành

b: Xét tứ giác BDNH có BH//DN

nên BDNH là hình thang

11 tháng 12 2023

a: Xét tứ giác BMNP có

BM//NP

MN//BP

Do đó: BMNP là hình bình hành

b:

Xét ΔABC có

M là trung điểm của AB

MN//BC

Do đó: N là trung điểm của AC

Xét tứ giác APCQ có

N là trung điểm chung của AC và PQ

=>APCQ là hình bình hành

c: Xét ΔABC có

N là trung điểm của AC

NP//AB

Do đó: P là trung điểm của CB

Để AQCP là hình thoi thì AP=CP

mà CP=BC/2

nên AP=BC/2

Xét ΔABC có

AP là đường trung tuyến

\(AP=\dfrac{BC}{2}\)

Do đó: ΔABC vuông tại A

=>\(\widehat{BAC}=90^0\)

a: Xét tứ giác AKMN có 

MN//AK

AN//MK

Do đó: AKMN là hình bình hành

mà \(\widehat{NAK}=90^0\)

nên AKMN là hình chữ nhật

b: Xét ΔAMQ có 

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAMQ cân tại A

mà AN là đường cao

nên AN là tia phân giác của góc MAQ(1)

Xét ΔAME có 

AK là đường cao

AK là đường trung tuyến

DO đó: ΔAME cân tại A

mà AK là đường cao

nên AK là tia phân giác của góc MAE(2)

Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)

hay Q,E,A thẳng hàng