Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Xét tứ giác ABCM có
D là trung điểm chun của AC và BM
=>ABCM là hình bình hành
=>AM//BC và AM=BC
b: Xét tứ giác ANBC có
E là trung điểm chung của AN và BC
=>ANBC là hình bình hành
=>AN//BC và AN=BC
=>M,A,N thẳng hàng
a) Xét \(\Delta MDA\)và \(\Delta CDB\)có:
MD = DC (gt)
DA = DB (gt)
\(\widehat{MDA}=\widehat{BDC}\)(đối đỉnh)
=> \(\Delta MDA=\Delta CDB\left(c.g.c\right)\)
b) Vì \(\Delta MDA=\Delta CDB\left(cma\right)\Rightarrow\widehat{MAD}=\widehat{DBC}\)(2 góc tương ứng)
Mà \(\widehat{MAD}\)so le trong với \(\widehat{DBC}\)
=> AM // BC (đpcm)
c) Xét \(\Delta AEN\)và \(\Delta BEC\)có:
EN = BE (gt)
AE = EC (gt)
\(\widehat{AEN}=\widehat{BEC}\)(đối đỉnh)
\(\Rightarrow\Delta AEN=\Delta CEB\left(c.g.c\right)\)
\(\Rightarrow\widehat{NAE}=\widehat{ECB}\)(2 góc tương ứng)
Mà \(\widehat{NAE}\)so le trong với \(\widehat{ECB}\)
\(\Rightarrow\)AN // BC
Ta có :
AN // BC
MA // BC
\(\Rightarrow AN\equiv MA\)
\(\Rightarrow\)M;A;N thẳng hàng (đpcm)
a: Xét tứ giác APCQ có
N là trung điểm của AC
N là trung điểm của PQ
Do đó: APCQ là hình bình hành
Suy ra: AQ//PC
hay AQ//BC(1)
Xét tứ giác AEBP có
M là trung điểm của AB
M là trung điểm của PE
Do đó: AEBP là hình bình hành
Suy ra: AE//BP
hay AE//BC(2)
Từ (1) và (2) suy ra E,A,Q thẳng hàng
2: Xét tứ giác ANBM có
D là trung điểm của AB
D là trung điểm của NM
Do đó: ANBM là hình bình hành
Suy ra: AN//BM
hay AN//BC
Xét tứ giác APCM có
E là trung điểm của AC
E là trung điểm của MP
Do đó: APCM là hình bình hành
Suy ra: AP//MC
hay AP//BC
Ta có: AN//BC
AP//BC
mà AN và AP cắt nhau tại A
nên N,A,P thẳng hàng