K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

Xét tứ giác AMHN có:  A M H ^ + A N H ^ = 90 0 + 90 0 = 180 0 => Đpcm

Xét tứ giác BNMC có:  B N C ^ = B M C ^ = 90 0 => Đpcm

24 tháng 1 2021

Vì BM, CN là 2 đường cao ứng vs AC, AB (gt)

\(\Rightarrow\) \(\widehat{AMB}=\widehat{ANC}\) = 90o

\(\Rightarrow\) \(\widehat{AMH}=\widehat{ANH}\) = 90o (H \(\in\) BM; H \(\in\) CN do BM \(\cap\) CN tại H)

Xét tứ giác ANHM có: \(\widehat{AMH}=\widehat{ANH}\)

\(\widehat{AMH}\) và \(\widehat{ANH}\) là 2 góc đối nhau (gt)

\(\Rightarrow\) ANHM là tứ giác nội tiếp (dhnb tứ giác nội tiếp)

Vì BM, CN là 2 đường cao ứng vs AC, AB (gt)

\(\Rightarrow\) \(\widehat{BNC}=\widehat{CMB}\) = 90o

Mà \(\widehat{BNC}\) và \(\widehat{CMB}\) đều nhìn cạnh BC với một góc 90o (cmt)

\(\Rightarrow\) BNMC là tứ giác nột tiếp (dhnb tứ giác nội tiếp)

Chúc bn học tốt!

Gọi O là trung điểm của AH

Ta có: ΔANH vuông tại N(HN⊥AB tại N)

mà NO là đường trung tuyến ứng với cạnh huyền AH(O là trung điểm của AH)

nên \(NO=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Ta có: ΔAMH vuông tại M(HM⊥AC tại M)

mà MO là đường trung tuyến ứng với cạnh huyền AH(O là trung điểm của AH)

nên \(MO=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Ta có: O là trung điểm của AH(cmt)

nên \(AO=OH=\dfrac{AH}{2}\)(3)

Từ (1), (2) và (3) suy ra OA=ON=OM=OH

⇔A,H,M,N∈(O)

hay tứ giác AMHN nội tiếp đường tròn(O)

Gọi D là trung điểm của BC

Ta có: ΔCBN vuông tại N(CN⊥AB tại N)

mà ND là đường trung tuyến ứng với cạnh huyền BC(D là trung điểm của BC)

nên \(ND=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(4)

Ta có: ΔMBC vuông tại M(MB⊥AC tại M)

mà MD là đường trung tuyến ứng với cạnh huyền BC(D là trung điểm của BC)

nên \(MD=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(5)

Ta có: D là trung điểm của BC(theo cách gọi)

nên \(BD=DC=\dfrac{BC}{2}\)(6)

Từ (4), (5) và (6) suy ra DB=DC=DN=DM

⇔B,C,N,M∈(D)

hay tứ giác BNMC nội tiếp đường tròn(D)(đpcm)

a: Xét tứ giác BNMC có 

\(\widehat{BNC}=\widehat{BMC}=90^0\)

Do đó: BNMC là tứ giác nội tiếp

hay B,N,M,C cùng thuộc một đường tròn

b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có 

\(\widehat{NAC}\) chung

Do đó: ΔAMB\(\sim\)ΔANC

Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)

hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Xét ΔAMN và ΔABC có

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

\(\widehat{NAC}\) chung

Do đó: ΔAMN\(\sim\)ΔABC

6 tháng 3 2022

https://hoc24.vn/cau-hoi/cho-tam-giac-nhon-efg-cac-duong-cao-emfngk-cat-nhau-tai-hachung-minh-enmf-noi-tiep-va-widehatkmn2widehatkfnb-chung-minh-fkng-noi-tiep-va-xac-dinh-tam-p-cua-duong-tron-ngoai-tiep-tu-giac.5046725334376

cj giúp e vs ạ

26 tháng 3 2018
A) góc amh=anh=90=>tứ giác amhn noi tiếp B)Góc BMC = BNC =90->tứ giác BNMC nội tiếp C)Gọi giao điểm của AO với MN là P. Kẻ đường kính AA' Chứng minh ABC đồng dạng AMN Chứng minh tứ giác PA'CM nội tiếp Mà góc MCA'=90=>MPA'=90

a: góc ANH+góc AMH=180 độ

=>AMHN nội tiếp

b: Tham khảo

Tứ giác MCDE nội tiếp nên góc MED = 180 - C (1).

Tứ giác NBDE nội tiếp nên góc NED = 180 - B (2).

Mà góc MEN = 360 - MED - NED (3).

Thay (1), (2) vào (3) được: góc MEN = 360 - (180 - C) - (180 - B) = B +C = 180 - A.

Suy ra MEN + MAN =180. Vậy tứ giác MENA nội tiếp.

=>E thuộc đường tròn ngoại tiếp ΔAMN

a: Xét ΔABC có

BM là đường cao

CN là đường cao

BM cắt CN tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

b: Xét tứ giác AMHN có \(\widehat{AMH}+\widehat{ANH}=180^0\)

nên AMHN là tứ giác nội tiếp

c: Xét tứ giác BCMN có \(\widehat{BNC}=\widehat{BMC}=90^0\)

nên BCMN là tứ giác nội tiếp

a: Xét (O) có

ΔABM nội tiếp

AM là đường kính

Do đó: ΔABM vuông tại B

=>BM\(\perp\)AB

mà CH\(\perp\)AB

nên CH//BM

Xét (O) có

ΔACM nội tiếp

AM là đường kính

Do đó: ΔACM vuông tại C

=>AC\(\perp\)CM

mà BH\(\perp\)AC

nên BH//CM

Xét tứ giác BHCM có

BH//CM

BM//CH

Do đó: BHCM là hình bình hành

b:

Xét ΔABC có

BE,CF là các đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại D

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AMC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AMC}\)

Ta có: \(\widehat{ABC}+\widehat{BAN}=90^0\)(ΔADB vuông tại D)

\(\widehat{AMC}+\widehat{MAC}=90^0\)(ΔACM vuông tại C)

mà \(\widehat{ABC}=\widehat{AMC}\)

nên \(\widehat{BAN}=\widehat{MAC}\)

Xét (O) có

ΔANM nội tiếp

AM là đường kính

Do đó: ΔANM vuông tại N

=>AN\(\perp\)NM

mà AN\(\perp\)BC

nên BC//NM

Ta có: \(\widehat{CHD}=\widehat{ABC}\)(=90 độ-góc FCB)

\(\widehat{ABC}=\widehat{ANC}\)

Do đó: \(\widehat{CHD}=\widehat{ANC}\)

=>ΔCHN cân tại C

=>CH=CN

mà CH=BM

nên BM=CN

Xét tứ giác BCMN có BC//MN

nên BCMN là hình thang

Hình thang BCMN có BM=CN

nên BCMN là hình thang cân