Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(BH\perp AD\left(gt\right)\Rightarrow\widehat{BHA}=\widehat{BHD}=90^0\)
\(CK\perp AD\left(gt\right)\Rightarrow\widehat{AKC}=90^0\)
Xét \(\Delta BHD\)và \(\Delta CKD\) có:
\(\widehat{BHD}=\widehat{CKD}=90^0\)
\(\widehat{BDH}=\widehat{CDK}\) (đối đỉnh)
Do đó: \(\Delta BHD\infty\Delta CKD\left(g.g\right)\)
b, Xét \(\Delta ABH\) và \(\Delta ACK\) có:
\(\widehat{BAH}=\widehat{CAK}\) (vì AD là tia p/g của góc BAC)
\(\widehat{AHB}=\widehat{AKC}=90^0\)
Do đó: \(\Delta ABH\infty\Delta ACK\left(g.g\right)\)
Suy ra: \(\frac{AB}{AH}=\frac{AC}{AK}\) hay \(AB.AK=AC.AH\)
C, \(\Delta ABH\infty\Delta ACK\left(cmt\right)\Rightarrow\frac{BH}{CK}=\frac{AB}{AC}\left(1\right)\)
\(\Delta BHD=\Delta CKD\left(cmt\right)\Rightarrow\frac{DH}{DK}=\frac{BH}{CK}\left(2\right)\)
Từ (1) và (2), ta được: \(\frac{DH}{DK}=\frac{BH}{CK}=\frac{AB}{AC}\)
d, Gọi giao điểm giữa FM và BH là O và giao điểm giữa FM và CK là I.
Bạn chứng minh được tam giác BOF tại O và tam giác CIE vuông tại I
\(\Delta BOM=\Delta CIM\left(ch.gn\right)\Rightarrow BO=CI\)(2 cạnh tương ứng)
\(AD//FM\left(gt\right)\Rightarrow\hept{\begin{cases}\widehat{BAD}=\widehat{F}\\\widehat{DAC}=\widehat{IEC}\end{cases}}\)(đồng vị)
Suy ra: \(\widehat{F}=\widehat{IEC}\)
Mà \(\hept{\begin{cases}\widehat{F}+\widehat{FBO}=90^0\\\widehat{IEC}+\widehat{ICE}=90^0\end{cases}}\)
Nên \(\widehat{FBO}=\widehat{ICE}\)
Chứng minh được \(\Delta FBO=\Delta ECI\left(g.c.g\right)\Rightarrow BF=CE\)(2 cạnh tương ứng)
Chúc bạn học tốt.
H, K để làm gì?
Trog tg ADC có ME // AD => CM/CE = CD/CA (Ta-let) (1)
trog tg BMF có AD // MF => BM/BF = BD/BA (2)
theo t/c đường pg trog tg ABC có CD/CA = BD/BA (3)
Từ (1), (2) và (3) => CM/CE = BM/CF, mà CM = BM => CE = BF
Hồ sĩ tiến , để lm các câu a, b, c bn ak. Đây là câu cuối nhg mih o biết lm
Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
góc MAB=góc NAC
=>ΔAMB đồng dạng với ΔANC
=>AM/AN=AB/AC
=>AM*AC=AB*AN
c: DB/DC=AB/AC=5/8
Xét ΔDMB vuông tại M và ΔDNC vuông tại N có
góc MDB=góc NDC
=>ΔDMB đồng dạng với ΔDNC
=>DM/DN=DB/DC=5/8
=>1/DN=5/8
=>DN=1,6cm