K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABI có MK//BI

nên MK/BI=AK/AI

=>MK/CI=AK/AI(1)

Xét ΔACI có NK//IC

nên NK/IC=AK/AI(2)

Từ (1) và (2) suy ra MK=KN

hay K là trung điểm của MN

Xét ΔBDC có 

M là trung điểm của BC

E là trung điểm của BD

Do đó: ME là đường trung bình

=>ME//CD

hay ID//ME

Xét ΔAME có 

D là trung điểm của AE

DI//EM

Do đó:I là trung điểm của AM

a: Xét ΔBDC có 

M là trung điểm của BC

E là trung điểm của DC

Do đó: ME là đường trung bình của ΔBDC

Suy ra: ME//BD và \(ME=\dfrac{BD}{2}\)

Xét ΔMAE có

D là trung điểm của AE

DI//ME

Do đó: I là trung điểm của AM

hay IA=IM

b: Xét ΔAME có 

I là trung điểm của AM

D là trung điểm của AE

Do đó: ID là đường trung bình của ΔAME

Suy ra: \(ID=\dfrac{ME}{2}\)

\(\Leftrightarrow BD=4\cdot ID\)

29 tháng 1 2020

Ta có: $I$ là trung điểm $BD$

Vì $I,K$ là trung điểm hai đường chéo hình thang $BCDE$ nên:

\(IK=\dfrac{(BC-DE)}{2}=\dfrac{1}{4}BC\\ \Rightarrow BC=4IK(đpcm)\)