Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hai tam giác vuông: ∆IMN và ∆IKN có:
IN chung
MNI = KNI (do NI là phân giác của ∠MNP)
⇒ ∆IMN = ∆IKN (cạnh huyền - góc nhọn)
b) ∆IKP vuông tại K
IP là cạnh huyền nên IP lớn nhất
IK < IP (1)
Do ∆IMN = ∆IKN (cmt)
⇒ MI = IK (2)
Từ (1) và (2)⇒ MI < IP
c) Xét hai tam giác vuông: ∆IKP và ∆IMQ có:
IM = IK (cmt)
∠PIK = ∠MIQ (đối đỉnh)
∆IKP = ∆IMQ (cạnh góc vuông - góc nhọn kề)
⇒ KP = MQ (hai cạnh tương ứng) (3)
Do ∆IMN = ∆IKN (cmt)
⇒ MN = KN (hai cạnh tương ứng) (4)
Từ (3) và (4) ⇒ KN + KP = MN + MQ
NP = NQ
⇒ ∆NPQ cân tại N
Lại có NI là phân giác của ∠MNP
⇒ NI là phân giác của ∠QNP
⇒ NI cũng là đường cao của ∆NPQ (tính chất tam giác cân)
⇒ ND ⊥ QP
1: Xét ΔMIK vuông tại I và ΔMAK vuông tại A có
MK chung
góc IMK=góc AMK
=>ΔMIK=ΔMAK
=>góc IKM=góc AKM
=>KM là phân giác của góc AKI
2: KI=KA
KA<KP
=>KI<KP
3: Xét ΔMBP có
PI,BA là đường cao
PI cắt BA tại K
=>K là trực tâm
=>MK vuông góc PB
MI=MA
KI=KA
=>MK là trung trực của AI
=>MK vuông góc AI
=>AI//PB
a) C/m MH là phân giác góc IMK.
-Xét tam giác MNP có AH là đường cao, vừa là đường phân giác.
tức MH là phân giác góc NMP
hay Mh là phân giác IMK.
( Cách 2 :
Xét hai tam giác vuông MNH và MPH, có:
góc MNH = góc MPH ( tam giác MNP cân)
MN= MP ( tam giác MNP cân)
=> hai tam giác bằng nhau ( cạnh huyền - góc nhọn)
=> NMH =PMH
hay MH là phân giác IMK.)
b) IK // NP
mà NP vuông MH
=> IK vuông góc MH.
ta có tam giác vuông MOI = tam giác vuông MOK (c.g.c)
=> OI=OK
Vậy MH là trung trực IK
c)
Chứng minh tam giác OIH = tam giác EHN
=> HNE =IHO
ta có
OIH + OHI =90 độ
<=> OIH + HNE =90 độ
Suy ra IKN = 90 độ
Vậy tam giác IKN vuông tại K.
1: Xét ΔNMI vuông tại M và ΔNKI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔNMI=ΔNKI
Suy ra: NM=NK
hay ΔNMK cân tại N
2: Xét ΔMIQ vuông tại M và ΔKIP vuông tại K có
IM=IK
\(\widehat{MIQ}=\widehat{KIP}\)
Do đó: ΔMIQ=ΔKIP
Suy ra: MQ=KP
Ta có: NM+MQ=NQ
NK+KP=NP
mà NM=NK
và MQ=KP
nên NQ=NP
hayΔNQP cân tại N
3: Xét ΔNQP có
NM/MQ=NK/KP
nên MK//QP