Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNE vuông tại E và ΔKNE vuông tại E có
NE chung
góc MNE=góc KNE
=>ΔMNE=ΔKNE
b: Xét ΔNMD và ΔNKD có
NM=NK
góc MND=góc KND
ND chung
=>ΔNMD=ΔNKD
=>góc NKD=90 độ
=>DK vuông góc NP
a, xét tma giác MNE và tam giác MPE có :
MN = MP và góc MNE = góc MPE do tam giác MNP cân tại M (Gt)
NE = EP do E là trđ của NP (gt)
=> tam giác MNE = tam giác MPE (c-g-c)
=> góc MEN = góc MEP (đn)
mà góc MEN + góc MEP = 180 (kb)
=> góc MEN = 90
=> MN _|_ NP và có M là trđ của PN (Gt)
=> ME là trung trực của NP (đn)
b, xét tam giác MKE và tam giác MHE có : ME chung
góc NME = góc PME do tam giác MNE = tam giác MPE (Câu a)
góc MKE = góc MHE = 90
=> tam giác MKE = tam giác MHE (ch-cgv)
=> MK = MH (đn)
=> tam giác MHK cân tại M (đn)
=> góc MKH = (180 - góc NMP) : 2 (tc)
tam giác MNP cân tại M (Gt) => góc MNP = (180 - góc NMP) : 2 (tc)
=> góc MKH = góc MNP mà 2 góc này đồng vị
=> KH // NP (đl)
( cma ) là đã đc chứng minh ở phần a
( cmt ) là chứng minh trên
Bạn tick hộ mik nha ! Chúc bạn học tốt !
a) Xét △MNE và △HNE có
NE cạnh chung
góc MNE = góc ENH (gt)
⇒ △MNE = △HNE ( cạnh huyền - góc nhọn )
⇒ MN = HN ( 2 cạnh tương ứng )
⇒△MNH cân
b) Trong tam giác cân , đường phân giác đồng thời là đường trung tuyến , đường trung trực và đường cao mà NE là đường phân giác
⇒ NE là đường trung trực MH 3
c) △MNE = △HNE (cma ) ⇒ ME = EH ( 2cạnh tương ứng )
Xét △MEK và △HEP có
góc MEK = góc HEP ( đối đỉnh )
ME=EH ( cmt )
⇒△MEK = △HEP ( góc nhọn - cạnh góc vuông )
Có NM + MK = NK
NH + HP = MP
mà NM = NH ; EM=HP ⇒△MKP cân
Trong tam giác cân , đường pg đồng thờilà đường tung trực , đường cao mà NE là tia pg
⇒NE là đường trung trực ⇒ NE ⊥ PK
⇒
a) xét \(\Delta MNE,\Delta HNE:\)
NE là cạnh chung
\(\widehat{M}=\widehat{H}=90^o\left(gt\right)\)
\(\widehat{N_1}=\widehat{N_2}\)( do NE là tia phân giác \(\widehat{N}\) )
\(\Rightarrow\Delta MNE=\Delta HNE\left(ch-gn\right)\)
b) vì \(\Delta MNE=\Delta HNE\) ( theo a)
\(\Rightarrow NM=NH\\ ME=HE\)
mà N và E cùng thuộc đường trung trực của MH nên NE là đường trung trực của MH
c) xét \(\Delta MEK,\Delta HEP:\)
\(\widehat{E_1}=\widehat{E_2}=\left(dd\right)\)
\(\widehat{KME}=\widehat{PHE}=90^o\left(gt\right)\)
ME = HE (theo a)
\(\Rightarrow\Delta MEK=\Delta HEP\left(g.c.g\right)\)
\(\Rightarrow EK=EP\) ( 2 cạnh tương ứng )