K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2023

a: Xét ΔMNP vuông tại M có MH là đường cao

nên \(NH\cdot PH=MH^2\left(1\right)\)

Xét ΔNHM vuông tại H có HE là đường cao

nên \(ME\cdot MN=MH^2\left(2\right)\)

Từ (1) và (2) suy ra \(NH\cdot PH=ME\cdot MN\)

b: Xét ΔMNP vuông tại M có MH là đường cao

nên \(\left\{{}\begin{matrix}MP^2=PH\cdot PN\\NM^2=NH\cdot NP\end{matrix}\right.\)

=>\(\dfrac{PH\cdot PN}{NH\cdot NP}=\dfrac{MP^2}{MN^2}\)

=>\(\dfrac{NH}{PH}=\left(\dfrac{MN}{MP}\right)^2\)

c: ΔMHP vuông tại H có HF là đường cao

nên \(MF\cdot MP=MH^2\)

mà \(ME\cdot MN=MH^2\)

nên \(MF\cdot MP=ME\cdot MN\)

=>\(\dfrac{MF}{ME}=\dfrac{MN}{MP}\)

Xét ΔMFN vuông tại M và ΔMEP vuông tại M có

\(\dfrac{MF}{ME}=\dfrac{MN}{MP}\)

Do đó: ΔMFN đồng dạng với ΔMEP

=>\(\widehat{MNF}=\widehat{MPE}\)

22 tháng 7 2017

giúp mình làm câu C với

27 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

27 tháng 8 2017

mình ko hiểu cho lắm bạn à đây là hình học mà 

7 tháng 1 2018

....