K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2019

Đề sai rồi PN là cạnh huyền mà sao = MN được

25 tháng 12 2016

Ta có hình vẽ:

M P N E F H Q

Mk quên nối Q với F lại, bạn tự nối lại khi làm bài nhé

a/ Trong tam giác MNP có: M+N+P = 1800

hay 900+600+P = 1800

=> góc P = 300

b/ Xét tam giác NFM và tam giác NFE có:

NM = NE (GT)

góc MNF = góc ENF (GT)

NF : cạnh chung

=> tam giác NFM = tam giác NFE (c.g.c)

c/ Xét tam giác NMP và tam giác NEQ có:

N: góc chung

NM = NE (GT)

M = E = 900 (do tam giác NFM = tam giác NFE)

=> tam giác NMP = tam giác NEQ (g.c.g)

=> NQ = NP (2 cạnh tương ứng) (1)

Ta có: góc QNH = góc PNH (GT) (2)

NH: chung (3)

TỪ (1),(2),(3) => tam giác NHQ = tam giác NHP

d/ C/m tam giác NMP = tam giác NEQ (đã chứng minh ở câu c)

Xét tam giác MFQ và tam giác CFE có:

góc M = góc E = 900

NQ = NP; NM = NE => MQ = EP

góc Q = góc P (vì tam giác NMP = tam giác NEQ)

=> tam giác MFQ = tam giác CFE (g.c.g)

=> góc MFQ = góc EFP (2 góc tương ứng)

Ta có: \(\widehat{MFN}\)+\(\widehat{NFE}\)+\(\widehat{EFP}\)=1800

=> \(\widehat{MFN}\)+\(\widehat{NFE}\)+\(\widehat{MFQ}\)=1800

=> \(\widehat{QFE}\)=1800

hay E,F,Q thẳng hàng

23 tháng 6 2020

M P N 3 4 A C G

a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ

\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)

THAY\(NP^2=4^2+3^2\)

\(NP^2=16+9\)

\(NP^2=25\)

\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)

XÉT \(\Delta MNP\)

\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)

\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)

B) xét \(\Delta\text{ CPM}\)\(\Delta\text{CPA}\)

 \(PM=PA\left(GT\right)\)

\(\widehat{MPC}=\widehat{APC}=90^o\)

PC LÀ CAH CHUNG 

=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)

23 tháng 6 2020

c)

\(\Delta CPM=\Delta CPA\left(cmt\right)\)

\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)

\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)

             \(\widehat{NMC}+\widehat{CMP}=90^o\)

\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)

\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)

\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)

\(\Rightarrow\Delta NMC\text{ cân}\)

\(\Rightarrow CN=CM\left(đpcm\right)\)

26 tháng 6 2020

a. xét tg MND và tg MPD có : MD chung

^PMD = ^NMD do MD là pg của ^PMN (Gt)

MN = MP do tg MNP cân tại M (gt)

=> tg MND = tg MPD (c-g-c)

b. tg MNP cân tại A (gt) có MD là pg

=> MD đồng thời là đường cao (đl) và là trung tuyến => DN = 6

=> tg MND vuông tại D  (Đn)

=> MN^2 = MD^2 + DN^2 (đl Pytago)

DN = 6; MN =10

=> MD = 8 do MD > 0

c.

26 tháng 6 2020

kjhkmbnm,u

29 tháng 1 2021

a) Ta có: EF//BC(gt) =>\(\left\{{}\begin{matrix}\text{^EOB = ^OBC (SLT)}\\\text{ ^FOC = ^OCB (SLT)}\\\text{^AEF = ^B (Đồng vị)}\\\text{^AFE = ^C (Đồng vị)}\end{matrix}\right.\)

Có: ^OBC = ^OBA ( BF là phân giác ^B)

mà:  ^EOB = ^OBC (cmt)

=> ^EOB = ^OBA => tam giác EBO cân tại E

Có: ^OCA = ^OCB ( BF là phân giác ^B)

mà:  ^FOC = ^OCB (cmt)

=> ^FOC = ^OCA => tam giác FCO cân tại E

Ta có: ^AEF = ^B (cmt)

           ^AFE = ^C (cmt)

Mà ^B = ^C (tam giác ABC cân tại A)

=> ^AEF =  ^AFE => tam giác AEF cân tại A

Có : ^ABF = ^CBF =  \(\dfrac{1}{2}\) ^B ( BF là phân giác ^B)

       ^ACE = ^BCE = \(\dfrac{1}{2}\) ^B ( CF là phân giác ^C)

mà : ^B = ^C (tam giác ABC cân tại A)

=> ^ACE = ^ABF = ^CBF = ^BCE

Xét tg OBC có: ^OBC = ^OCB (^CBF = ^BCE) => tg OBC cân tại O

Xét tam giác FCO và tam giác EBO có:

^FOC = ^FOB ( đối đỉnh)

^FCO = ^EBO (^ABF = ^ACE)

OB = OC ( tg OBC cân tại O )

=> tam giác FCO = tam giác EBO(g-c-g)

 

 

 

 

 

1: Xét ΔMIK vuông tại I và ΔMAK vuông tại A có

MK chung

góc IMK=góc AMK

=>ΔMIK=ΔMAK

=>góc IKM=góc AKM

=>KM là phân giác của góc AKI

2: KI=KA

KA<KP

=>KI<KP

3: Xét ΔMBP có

PI,BA là đường cao

PI cắt BA tại K

=>K là trực tâm

=>MK vuông góc PB

MI=MA

KI=KA

=>MK là trung trực của AI

=>MK vuông góc AI

=>AI//PB