Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔPQR có
E là trung điểm của PQ
F là trung điểm của PR
DO đó: EF là đường trung bình
=>EF//QR và EF=QR/2
=>EF//QG và EF=QG
Xét tứ giác QEFR có EF//QR
nên QEFR là hình thang
b: EF=QR/2=16/2=8(cm)
c: Xét tứ giác EFGQ có
EF//GQ
EF=GQ
Do đó: EFGQ là hình bình hành
Xét ΔABC có
BD,CE là trung tuyến
BD cắt CE tại G
=>G là trọng tâm
=>BG=2GD và CG=2GE
=>BG=GH và CG=GI
=>G là trung điểm chung của CI và BH
=>BIHC là hình bình hành
Bạn tự vẽ hình nha ==''
G là trung điểm của MN
H là trung điểm của MI
=> GH là đường trung bình của tam giác MNI
=> GH // NI
=> GHNI là hình thang
GH là đường trung bình của tam giác MNI
=> GH = NI : 2 = 3 : 2 = 1,5 (cm)
E là trung điểm của NI
H là trung điểm của MI
=> EH là đường trung bình của tam giác MNI
=> EH // MN
=> MHEN là hình thang
mà M = 900
=> MHEN là hình thang vuông
Chúc bạn học tốt ^^
a) Có: NG=MG(gt)
MH=HI(gt)
=>GH là đường trung bình của ΔMNI
b)=>GH//NI
=>tứ giác GHIN là hình thang
c) Có: GH là đg trung bình
=>GH=1/2NI=1/2.3=3/2
d) Có: NE=EI(gt)
MH=HI(gt)
=> HE là đg trung bình
=>HE//MN
=>MHEN là ht vuông
a: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{1}{2}BC\)
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
b: Xét ΔABC có
D,F lần lượt là trung điểm của BA,BC
=>DF là đường trung bình của ΔABC
=>DF//AC và \(DF=\dfrac{AC}{2}\)
DF//AC
E\(\in\)AC
Do đó: DF//AE
Ta có: \(DF=\dfrac{AC}{2}\)
\(AE=\dfrac{AC}{2}\)
Do đó: DF=AE
Xét tứ giác ADFE có
DF//AE
DF=AE
Do đó: ADFE là hình bình hành
Xét tứ giác AFBI có
D là trung điểm chung của AB và FI
=>AFBI là hình bình hành
a: Xét ΔABC có
M,N lần lượt là trung điểm của AB và AC
nên MN là đường trung bình
=>MN//BC và MN=BC/2
=>MN//BE và MN=BE
=>BMNE là hình bình hành
b: Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên HM=AM(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AN(2)
Từ (1)và (2) suy ra AH là đường trung trực của MN
Xét ΔABC có
E,M lần lượt là trung điểm của CB và BA
nên ME là đường trung bình
=>ME=CA/2=NH
Xét tứ giác MNEH có MN//EH
nên MNEH là hình thang
mà ME=NH
nên MNEH là hình thang cân
a: Xét ΔGHI có
P là trung điểm của GH
Q là trung điểm của GI
Do đó: PQ là đường trung bình
=>PQ//HI và PQ=HI/2
mà HR=HI/2
nên PQ=HR và PQ//HR
b: Xét tứ giác PQIH có PQ//HI
nên PQIH là hình thang
c: Xét tứ giác PQRH có
PQ//RH
PQ=RH
Do đó: PQRH là hình bình hành