Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn có thể tự vẽ hình chứ ? Tại hình hơi rối nên mình lười vẽ =)))
a) Xét ∆ABD và ∆CED có :
DA = DC (D là trung điểm của AC)
∠ADB = ∠CDE (2 góc đối đỉnh)
DB = DE (GT)
=> ∆ABD = ∆CED (c.g.c)
=> ∠ABD = ∠CED (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AB // CE (DHNB)
b) Ta có : AF ⊥ BD (GT)
Mà CG ⊥ DE (GT)
=> AF // CG (Tính chất)
=> ∠DAF = ∠DCG (2 góc so le trong) (1)
Xét ∆ADF và ∆CDG có :
∠DAF = ∠DCG (Theo (1))
DA = DC (D là trung điểm của AC)
∠ADF = ∠CDG (2 góc đối đỉnh)
=> ∆ADF = ∆CDG (g.c.g)
=> DF = DG (2 cạnh tương ứng)
c) Mình cũng có chứng minh thẳng hàng mấy lần rồi nhưng nhìn hình thì mình không tìm được các yếu tố có thể chứng minh nên bạn nhờ ai khác nhé.
Bạn tự vẽ hình nha
AD = AB + BD
AE = AC + CE
mà AB = AC (tam giác ABC cân tại A)
BD = CE (gt)
=> AD = AE
HAE = HAB + BAE
KAD = KAC + CAD
mà HAB = KAC (tam giác AHB = tam giác AKC)
=> HAE = KAD
Xét tam giác AHE và tam giác AKD có:
AD = AE (chứng minh trên)
HAE = KAD (chứng minh trên)
AH = AK (tam giác AHB = tam giác AKC)
=> Tam giác AHE = Tam giác AKD (c.g.c)
Chúc bạn học tốt
a) Xét ΔΔvuông HBD và ΔΔvuông KCE, có:
BD=CE (gt)
B1ˆB1^=B2ˆB2^ (đối đỉnh)
C1ˆC1^=C2ˆC2^(đối đỉnh)
Mà B1ˆB1^=C1ˆC1^(gt)
nên B2ˆB2^=C2ˆC2^
Do đó:ΔΔ HBD = ΔΔKCE (c.h-g.n)
=>HB=CK (2 cạnh tương ứng)
b)Xét ΔΔAHB và ΔΔAKC có:
HB=CK (c/m trên)
AB=AC (gt)
ABHˆABH^=ACKˆACK^ (vì ABHˆABH^=1800-B1ˆB1^ ; ACKˆACK^=180o-C1ˆC1^ mà B1ˆB1^=C1ˆC1^)
c)
Do đó: ΔΔAHB = ΔΔAKC (c-g-c)
=>AHBˆAHB^=AKCˆAKC^ (2 góc tương ứng)
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
b: góc IBC=góc HBD
góc ICB=góc KCE
mà góc HBD=góc KCE
nên góc IBC=góc ICB
=>IB=IC
IB+BH=IH
IC+CK=IK
mà IB=IC; BH=CK
nên IK=IH
Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AH=AK
AI chung
=>ΔAHI=ΔAKI
=>góc HAI=góc KAI
=>AI là phân giác của góc DAE
c: Xet ΔADE có AH/AD=AK/AE
nên HK//DE