K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

Bán kính đường tròn ngoại tiếp tam giác MNP bằng:  3 3 cm

30 tháng 5 2021

-từ S hình vuông => cạnh tam giác =4

- BK= \(R=\frac{1}{2}.\frac{4}{\cos30}=\frac{4}{\sqrt{3}}\left(cm\right)\)

26 tháng 7 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

- Chọn D.

- Gọi O là tâm đường tròn nội tiếp Δ ABC, H là tiếp điểm thuộc BC.

Đường phân giác AO của góc A cũng là đường cao nên A, O, H thẳng hàng.

Ta có: HB = BC, ∠HAC = 30o, AH = 3.OH = 3 (cm)

Để học tốt Toán 9 | Giải bài tập Toán 9

26 tháng 12 2015

NA/BA = NC/BC 
Vì Tam giác ABC vuông tại A, biết AB=3cm,BC=5cm => AC= 4(cm) 
=> NC-NA=4 (cm) 
=> NC/BC = NA/BA = ( NC-NA)/(BC-AB) = 2 
=> NA= BA*2 =6 (cm)

9 tháng 7 2019

 

Để học tốt Toán 9 | Giải bài tập Toán 9

- Chọn D.

- Gọi O là tâm đường tròn nội tiếp Δ ABC, H là tiếp điểm thuộc BC.

Đường phân giác AO của góc A cũng là đường cao nên A, O, H thẳng hàng.

Ta có: HB = BC, ∠HAC = 30o, AH = 3.OH = 3 (cm)

Để học tốt Toán 9 | Giải bài tập Toán 9

 

30 tháng 11 2023

Ta thấy bán kính đường tròn ngoại tiếp thì bằng 1313 đường cao.

Mà đường cao thì bằng √3232 cạnh.

Nên cạnh của tam giác gấp 2√323 bán kính, tức là bằng 2√3r23�.

Diện tích 2√3r.3r2=3√3r223�.3�2=33�2.

30 tháng 11 2023

Để chứng minh diện tích của tam giác đều ngoại tiếp đường tròn bán kính r bằng 3r^2, ta sẽ sử dụng các công thức và tính chất của tam giác đều và đường tròn.

 

Giả sử tam giác đều ngoại tiếp đường tròn có tâm O và bán kính r. Đường tròn này cắt tam giác đều tại các đỉnh A, B và C.

 

Để tính diện tích của tam giác đều ABC, ta sẽ sử dụng công thức diện tích tam giác đều:

 

Diện tích tam giác đều ABC = (cạnh)^2 * sqrt(3) / 4

 

Với tam giác đều ngoại tiếp đường tròn, cạnh tam giác bằng đường kính của đường tròn, tức là 2r.

 

Diện tích tam giác đều ABC = (2r)^2 * sqrt(3) / 4

 

= 4r^2 * sqrt(3) / 4

 

= r^2 * sqrt(3)

 

Vậy diện tích của tam giác đều ngoại tiếp đường tròn bán kính r là r^2 * sqrt(3).

 

Để chứng minh r^2 * sqrt(3) = 3r^2, ta sẽ sử dụng tính chất của căn bậc hai:

 

sqrt(3) = sqrt(3) * sqrt(1) = sqrt(3 * 1) = sqrt(3) * sqrt(3) / sqrt(3) = 3 / sqrt(3)

 

Vậy r^2 * sqrt(3) = r^2 * (3 / sqrt(3)) = 3r^2.

 

Vậy ta đã chứng minh được diện tích của tam giác đều ngoại tiếp đường tròn bán kính r bằng 3r^2.