Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do góc DAM = góc AMB=600, mà 2 góc này slt nên AD//BC=> ABCD là hình thang
Mà góc ABC= góc DCB=600 nên ABCD là hình thang cân.
Còn O là điểm gì thì mik ko bt
Do AM=AB, AD//BC nên ABCM là hình thoi.
Ma AC và BM là 2 đường chéo nên OAM=OAB=600/2=300.
Tương tự ta cx có OBM=OBC=600/2=300.
=> ABO=600+300=900
Do Tam giác ABO có B=900 và A=300 nên đây là tam giác nửa đều.
=>AO=2OB. (1)
Mà O là giao điểm 2 đg chéo hình thg cân nên OA=OD. (2)
Từ (1),(2), ta có OD=2OB.
(DO MÌNH TỰ GIẢI NÊN CÓ GÌ SAI BN SỬA LẠI NHA!)
Xét tam giác ABD và tam giác FBC có:
AB=FB ( cạnh tam giác đều FAB)
DB=BC ( cạnh tam giác đều DBC)
góc ABD = góc FBC ( cùng bằng góc ABC + 60 độ)
Suy ra tam giác ABD = tam giác FBC (C.G.C)
=> FC=AD
Gọi M là giao điểm của AE và CF
ADFE là hình bình hành nên ^ADF = ^AEF (hai góc đối)
Suy ra ^BDF = ^FEC
Xét \(\Delta\)BDF và \(\Delta\)FEC có:
BD = FE (cùng bằng AD)
^BDF = ^FEC (cmt)
DF = EC ( cùng bằng AE)
Do đó \(\Delta\)BDF = \(\Delta\)FEC (c.g.c) suy ra BF = CF (1) và ^BFD = ^FCE
Mặt khác ^AMC = ^DFC (do DF // AE)
^AMC = ^MEC + ^FCE = 600 + ^FCE và ^DFC = ^BFC + ^BFD
Do đó ^BFC = 600 (2)
Từ (1) và 2) suy ra \(\Delta\)FBC đều (đpcm)