Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình cũng đang định hỏi bài này á
bạn nào bít làm thì làm giúp chúng mình nha
thank you
a) Vì \(\Delta\)ABC đều nên \(\widehat{ABC}=\widehat{ACB}=\widehat{BAC}\) và AB = AC = BC.
Ta có: \(\widehat{ABC}\) + \(\widehat{NBM}\) = 180o (kề bù)
\(\widehat{ACB}\) + \(\widehat{ICN}\) = 180o (kề bù)
=> \(\widehat{NBM}\) = \(\widehat{ICN}\)
Lại có: BC + CN = BN
AC + IA = CI
mà BC = AC; CN = IA
=> BN = CI
Xét \(\Delta\)BMN và \(\Delta\)CNI có:
BN = CI (c/m trên)
\(\widehat{NBM}\) = \(\widehat{ICN}\) (c/m trên)
BM = CN (gt)
=> \(\Delta\)BMN = \(\Delta\)CNI (c.g.c)
b) Vì \(\Delta\)BMN = \(\Delta\)CNI (câu a)
=> MN = NI (2 cạnh t/ư)
Lại có:
\(\widehat{ACB}\) + \(\widehat{ICN}\) = 180o (kề bù) \(\widehat{BAC}\) + \(\widehat{MAI}\) = 180o (kề bù) mà \(\widehat{ACB}=\widehat{BAC}\) => \(\widehat{ICN}=\widehat{MAI}\) Ta lại có: AB + BM = AM AC + IA = IC mà AB = AC; BM = IA => AM = IC Xét \(\Delta\)AMI và \(\Delta\)CIN có: AM = CI (c/m trên) \(\widehat{MAI}\) = \(\widehat{ICN}\) (c/m trên) AI = CN (gt) => \(\Delta\)AMI = \(\Delta\)CIN (c.g.c) => MI = IN (2 cạnh t/ư) mà MN = IN (c/m trên) => MI = IN = MN Do đó \(\Delta\)MNI đều.
a) xét tam giác AMD và tam giác CMB có :
AM = CM ( vì Mlaf trung điểm của AC)
\(\widehat{AMD}=\widehat{CMB}\)(đối đỉnh)
MD = MB (gt)
=> tam giác AMD = tam giác CMB (c-g-c)
xét tam giác ANE và tam giác BNC có :
AN = BN ( vì N là trung điểm của AB)
\(\widehat{ANE}=\widehat{BNC}\)(đối đỉnh)
NE = CN (gt)
=> tam giác ANE = tam giác BNC (c-g-c)
b) vì tam giác AMD = tam giác CMB (cmt) => AD = BC (2 cạnh tương ứng)(1)
vì tam giác ANE = tam giác BNC (cmt) => AE = BC ( 2 cạnh tương ứng) (2)
từ (1), (2) => AD = AE (đpcm)
c) Vì tam giác AMD = tam giác CMB (cmt) => \(\widehat{MAD}=\widehat{MCB}\)(2 góc tương ứng)
mà \(\widehat{MAD}\)và \(\widehat{MCB}\)ở vị trí so le trong
do đó AD // BC (3)
Vì tam giác ANE = tam giác BNC (cmt) => \(\widehat{NAE}=\widehat{NBC}\)(2 góc tương ứng)
mà \(\widehat{NAE}\)và \(\widehat{NBC}\) ở vị trí so le trong
do đó AE // BC (4)
từ (3), (4) => A, E, D thẳng hàng (đpcm)
a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
AB=AC(ΔABC cân tại A)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
BM=CN(gt)
Do đó: ΔABM=ΔACN(c-g-c)
Bạn tự vẽ hình nha =="
a.
Xét tam giác ABM và tam giác ADM có:
AB = AD (gt)
BM = DM (M là trung điểm của BD)
AM là cạnh chung
=> Tam giác ABM = Tam giác ADM (c.c.c)
b.
AB = AD (gt)
=> Tam giác ABD cân tại A
M là trung điểm của BD
=> AM là trung tuyến của tam giác ABD cân tại A
=> AM là đường cao tam giác ABD cân tại A
=> AM _I_ BD
c.
Xét tam giác ABK và tam giác ADK có:
AB = AD (tam giác ABD cân tại A)
BAK = DAK (tam giác ABM = tam giác ADM)
AK là cạnh chung
=> Tam giác ABK = Tam giác ADK (c.g.c)
d.
ABK + KBF = 180 (2 góc kề bù)
ADK + KDC = 180 (2 góc kề bù)
Mà ABK = ADK (tam giác ABK = tam giác ADK)
=> KBF = KDC
Xét tam giác KBF và tam giác KDC có:
KB = KD (tam giác ABK = tam giác ADK)
KBF = KDC (chứng minh trên)
BF = DC (gt)
=> Tam giác KBF = Tam giác KDC (c.g.c)
BKD + DKC = 180 (2 góc kề bù)
Mà DKC = BKF (Tam giác KBF = Tam giác KDC)
=> BKD + BKF = 180
=> KD và KF là 2 tia đối
=> K , F , D thẳng hàng
Chúc bạn học tốt ^^
Bạn tự vẽ hình nha =="
a.
Xét tam giác ABM và tam giác ADM có:
AB = AD (gt)
BM = DM (M là trung điểm của BD)
AM là cạnh chung
=> <!--[endif]-->Tam giác ABM = Tam giác ADM (c.c.c)
b.
AB = AD (gt)
=> Tam giác ABD cân tại A
M là trung điểm của BD
=> AM là trung tuyến của tam giác ABD cân tại A
=> AM là đường cao tam giác ABD cân tại A
=> AM _I_ BD
c.
Xét tam giác ABK và tam giác ADK có:
AB = AD (tam giác ABD cân tại A)
BAK = DAK (tam giác ABM = tam giác ADM)
AK là cạnh chung
=> Tam giác ABK = Tam giác ADK (c.g.c)
d.
ABK + KBF = 180 (2 góc kề bù)
ADK + KDC = 180 (2 góc kề bù)
Mà ABK = ADK (tam giác ABK = tam giác ADK)
=> KBF = KDC
Xét tam giác KBF và tam giác KDC có:
KB = KD (tam giác ABK = tam giác ADK)
KBF = KDC (chứng minh trên)
BF = DC (gt)
=> Tam giác KBF = Tam giác KDC (c.g.c)
BKD + DKC = 180 (2 góc kề bù)
Mà DKC = BKF (Tam giác KBF = Tam giác KDC)
=> BKD + BKF = 180
=> KD và KF là 2 tia đối
=> K , F , D thẳng hàng
Chúc bạn học tốt ^^
Nobi Nobita s có chữ endif hay là bạn vào KTPT copy bài của Phương An
KDSSSSSSSSSM88888865
JKJFGEKDGSLGYSDLFBHTBH R.DSTG
DKJTRYBN4EBS;TU;J,RBU56