K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

Do ABC là tam giác đều nên góc A=góc B=góc C=60o

=> góc ACE=180o-60o=120o

góc ABD=180o-60o=120o

Xét tam giác ABD và tam giác ACE có

BD=CE(gt)

góc ABD=góc ACE=120o(chứng minh trên)

AB=AC(do ABC là tam giác đều)

Vậy tam giác ABD=tam giác ACE(c-g-c)

=> DA=EA (cạnh tương ứng)

Vậy tam giác ADE là tam giác cân

 

 

30 tháng 5 2016

Do ABC là tam giác đều nên góc A=góc B=góc C=60o

=> góc ACE=180o-60o=120o

góc ABD=180o-60o=120o

Xét tam giác ABD và tam giác ACE có

BD=CE(gt)

góc ABD=góc ACE=120o(chứng minh trên)

AB=AC(do ABC là tam giác đều)

Vậy tam giác ABD=tam giác ACE(c-g-c)

=> DA=EA (cạnh tương ứng)

Vậy tam giác ADE là tam giác cân

21 tháng 3 2020

XÉT \(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)

THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)

                      \(\widehat{B}+\widehat{C}=130^o\)

\(\widehat{B}=\widehat{C}\)

\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)

TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)

\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)

TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)

\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)

XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C 

\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)

XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B

\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)

TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)

THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)

       \(\Rightarrow\widehat{DAE}=115^0\)

6 tháng 4 2020

Lo cậu

6 tháng 4 2020

Phạm Tuấn Anh :

cậu rảnh quá ha

@@@@@@@

21 tháng 5 2020

a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )

16 tháng 4 2018

Tao ko bit

21 tháng 4 2018

de lam cac ban

...........

Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ

                                                                                   góc ACB+ACE=180 độ

=> góc ABD=góc  ACE

Xét tam giác ABD và tam giác ACE có 

AB=AC (tam giác ABC cân tại A)

góc ABD=góc ACE (cmt)

BD=CE(gt)

=> tam giác ABD=tam giác ACE(c-g-c)

=> AD=AE(cạnh tương ứng)

Vậy tam giác ADE cân và cân tại A

b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E

Xét tam giác AMD và tam giác AME có:

AD=AE(tam giác ADE cân tại A)

góc D=góc E(cmt)

góc AMD=góc AME=90 độ

=> tam giác AMD=tam giác AME(ch-gn)

=> góc DAM=góc EAM(góc tương ứng)

Vậy AM là tia phân giác góc DAE

 

22 tháng 4 2020

Tam giác cân

a/ Có: ΔABC cân tại A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

Có: \(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{ABD}=180^0\\\widehat{ACB}+\widehat{ACE}=180^0\end{matrix}\right.\) (kề bù)

Mà: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)

\(\Rightarrow\) \(\widehat{ABD}=\widehat{ACE}\)

Ta có: \(\left\{{}\begin{matrix}AB=BD\left(GT\right)\\AC=CE\left(GT\right)\end{matrix}\right.\)

Mà: AB = AC (ΔABC cân tại A)

=> BD = CE

Xét ΔABD và ΔACE ta có:

AB = AC (ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

BD = CE (cmt)

=> ΔABD = ΔACE (c - g - c)

b/ Thiếu đề

c/ Có: AB = BD (GT)

=> ΔABD cân tại B

d/ Có: ΔABD = ΔACE (câu a)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{D}=\widehat{E}\\\widehat{ABD}=\widehat{ACE}\end{matrix}\right.\) (2 góc tương ứng)

Có: \(\left\{{}\begin{matrix}\widehat{ABD}+\widehat{ABE}=180^0\\\widehat{ACE}+\widehat{ACD}=180^0\end{matrix}\right.\) (kề bù)

Mà: \(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

\(\Rightarrow\widehat{ABE}=\widehat{ACD}\)

Có: \(\left\{{}\begin{matrix}BD+BC=DC\\BC+CE=BE\end{matrix}\right.\)

Mà: BD = CE (GT) và BC chung

=> DC = BE

Xét ΔACD và ΔABE ta có:

DC = BE (cmt)

\(\widehat{ABE}=\widehat{ACD}\left(cmt\right)\)

AB = AC (ΔABC cân tại A)

=> ΔACD = ΔABE (c - g - c)

d: Ta có: \(\widehat{KBC}=\widehat{MBD}\)

\(\widehat{KCB}=\widehat{NCE}\)

mà \(\widehat{MBD}=\widehat{NCE}\)

nên \(\widehat{KBC}=\widehat{KCB}\)

hay ΔKBC cân tại K

=>KB=KC

Ta có: KB+BM=KM

KC+CN=KN

mà KB=KC

và BM=CN

nên KM=KN

=>ΔKNM cân tại K