K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

 

Giải bài 58 trang 90 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có:  A B D ^ = 90 o

⇒ AD là đường kính của đường tròn ngoại tiếp tam giác ABD Mà ABDC là tứ giác nội tiếp

⇒ AD là đường kính của đường tròn ngoại tiếp tứ giác ABDC.

⇒ tâm O là trung điểm AD.

Vậy tâm đường tròn đi qua bốn điểm A, B, D, C là trung điểm AD.

26 tháng 6 2019

Giải bài 58 trang 90 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 58 trang 90 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ AD là đường kính của đường tròn ngoại tiếp tam giác ABD Mà ABDC là tứ giác nội tiếp

⇒ AD là đường kính của đường tròn ngoại tiếp tứ giác ABDC.

⇒ tâm O là trung điểm AD.

Vậy tâm đường tròn đi qua bốn điểm A, B, D, C là trung điểm AD.

Kiến thức áp dụng

+ Một tứ giác có tổng số đo hai góc đối nhau bằng 180º thì tứ giác đó nội tiếp được đường tròn.

+ Góc nội tiếp chắn nửa đường tròn là góc vuông.

11 tháng 4 2017

a) Theo giả thiết, = = .60o = 30o

= + (tia CB nằm giữa hai tia CA, CD)

=> = 60o + 30o = 90o (1)

Do DB = CD nên ∆BDC cân => = = 30o

Từ đó = 60o + 30o = 90o (2)

Từ (1) và (2) có + = 180o nên tứ giác ABDC nội tiếp được.

b) Vì = 90o nên AD là đường kính của đường tròn ngoại tiếp tứ giác ABDC, do đó tâm đường tròn ngoại tiếp tứ giác ABDC là trung điểm AD.



2 tháng 6 2019

Giải bài 58 trang 90 SGK Toán 9 Tập 2 | Giải toán lớp 9

Do tam giác ABC là tam giác nên  A C B ^ = 60 o

=> Tứ giác ABDC có: 

=> ABDC là tứ giác nội tiếp

a)Nối F với D : E với D ta có:

Xét tam giác FBC ta có 

D là trung điểm BC(1)

Góc BFC=90 (2)

Từ (1)(2)=>FD là trung tuyến của tam giác FBC

=>BD=CD=DF(*)

Chứng minh tương tự tam giác EBC

=>DE=DC=DB(**)

Từ (*)(**)=>BD=CD=DF=DE=(1/2BC)

=>B;F;E;C thuộc đừng tròn

=>D là tâm của đường tròn

B) Do B;H;E nằm trên cùng 1 đừng thẳng => H ko thuộc đừng tròn 

=>B;H;E;c ko thuộc đừng tròn

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.b/ CM: EM = EFc/ Gọi I là tâm đường tròn ngoại tiếp...
Đọc tiếp

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.

a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.

b/ CM: EM = EF

c/ Gọi I là tâm đường tròn ngoại tiếp tam giác DMF. CM góc ABI có số đo không đổi khi M di động trên cung \(\widebat{BD}\)

Bài 2: Cho tam giác đều ABC nội tiếp trong đường tròn (O). Một đường thẳng d thay đổi đi qua A, cắt (O) tại điểm thứ hai là E, cắt hai tiêp tuyến kẻ từ B và C của đường tròn (O) lần lượt tại M và N sao cho A,M,N nằm ở cùng nửa mặt phẳng bờ BC. Gọi giao điểm của hai đường thẳng MC và BN tại F. CMR:

a/ Hai tam giác MBA và CAN dồng dạng và tích MB.CN không đổi.

b/ Tứ giác BMEF nội tiếp trong một đường tròn.

c/ Đường thẳng EF luôn đi qua một điểm cố định khi (d) thay đổi.

0