K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

a) Chú ý tam giác ABD cân tại B nên BM là đường phân giác cũng là đường cao, từ đó  B M ⊥ A D .

b) Chú ý AK, BM, DH là ba đường cao của tam giác AMD.

7 tháng 5 2021

a)                Vì tam giác ABC cân tại A => \(\widehat{ABC}=\widehat{ACB}=36^o\)

                   Xét tam giác ABC có:         

\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\) (tổng 3 góc của 1 tam giác)

 \(\widehat{BAC}=180^o-\left(\widehat{ABC}+\widehat{ACB}\right)\)

 \(\widehat{BAC}=180^o-\left(36^o+36^o\right)\)

 \(\widehat{BAC}=108^o\)

b, Xét tam giác ABE và tam giác ABF có:

                             \(\widehat{AEB}=\widehat{AFB}=90^o\)

                             AB là cạnh chung

                             \(\widehat{ABE}chung\)

  Vậy tam giác ABE = tam giác ABF (ch.gn)

Ý c bạn tự làm nhé 

7 tháng 5 2021

à thui, mk làm cho lun nè :

Vì ΔABE = ΔABF (câu b)

⇒ \(\widehat{EAB}=\widehat{BFE}\)(hai góc tương ứng) (1)

Xét ΔABF vuông tại F, ta có: \(\widehat{ABF}+\widehat{BAF}\) = 90° (phụ nhau)⇒ \(\widehat{ABF}\) = 90° - \(\widehat{BAF}\) = 90° - 18° = 72° (2)

Từ (3) và (4) suy ra: \(\widehat{EAB}=\widehat{BFE}\left(=72^o\right)\)

Ta có: \(\widehat{EAF}+\widehat{FAD}\) = 180° (kề bù) ⇒ ∠FAD = 180° - \(2\widehat{BAF}\) = 180° - 2. 72° = 180° - 144° = 36° (3)

Xét ΔAFD vuông tại F ta có:

 \(\widehat{FAD}+\widehat{FDA}\) = 90° (phụ nhau) ⇒ \(\widehat{FDA}\) = 90° - \(\widehat{FAD}\) = 90° - 36° = 54° (4)

Từ (3) và (4) suy ra:\(\widehat{FDA}>\widehat{FAD}\) ⇒ FA > FD.

Ta có:

AB = AC (ΔABC cân tại A)

AB > BF (định lí: trong tam giác, đường vuông góc là đường ngắn nhất)

⇒ AC > BF

Vì ΔABE = ΔABF (câu b)  ⇒ AE = AF (hai cạnh tương ứng)

Mà AF > FD (cmt) ⇒ EA > FD 

Vì: BD = BF + FD,      EC = EA + AC

Mà: AC > BF (cmt) và EA > FD  (cmt) 

Vậy: CE > DB   

1 tháng 4 2022

Cứu mình với

 

a: Xét ΔIDC và ΔIEC có

góc IDC=góc IEC

IC chung

góc C1=góc C2

=>ΔIDC=ΔIEC

=>DC=EC

=>ΔDCE cân tại C

b: MN//AC

=>góc DNM=góc DEC=góc NDM

=>ΔDMN cân tại M

=>MD=MN

=>MN=AE

Xét tứ giác AEMN có

AE//MN

AE=MN

=>AEMN là hbh

=>AM cắt EN tại trung điểm của mỗi đường

=>K là trung điểm của AM