Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) xét tam giác vuông DEH và DHI
có góc DEH = IDH(gt)
cạnh DH chung
=> tam giác DEH=IDH (ch-gn)
d) gọi K là giao điểm của EI và DH
xét tam giác EDK và IDK
có ED=ID(EDH=IDH)
góc EDK = IDK(gt)
cạnh DK chung
=> tam giác EDK = IDK(cgc)
=>IK=IK(2 cạnh tương ứng) (1)
góc DKE=DKI(2 góc tương ứng)
ta có góc DKE+DKI=180(kề bù)
mà góc DKE=DKI
=> góc DKI=DKE=180:2
DKI=DKE=90 (2)
Từ (1)(2)=> DK là trung trực của EI
hay DH là trung trực của EI
Chúc bạn học tốt
Từ tam giác DHE=tam giác DHI
Suy ra EH=HI
Ta lại có tam giác HIF có HIF=90
=> HF là cạnh lớn nhất
nên HF>HI
hay HF>EH
b) Xét 2 tam giác vuông KEH và FIH có
EHK=IHF( đối đỉnh)
EH=IF ( cmt)
Do đó tam giác KEH= tam giác FIH (CGV-GNK)
=> EK=IF ( 2 cạnh tương ứng)
c) ta có góc EHI= góc KHF ( đối đỉnh)
mà tam giác EHI có EH=HI (cmt)
=> tam giác EHI cân (1)
tam giác KHF có KH=HF (tam giác KEH= tam giác FIH)
=> tam giác KHF cân (2)
Từ (1) và (2) ta suy ra được
HEI=\(\frac{180^0-EHI}{2}\)
HFK=\(\frac{180^0-KHF}{2}\)
mà do góc EHI=KHF (cmt)
=> góc HEI= góc HFK
mà góc HEI và HFK ở vị trí so le trong nên EI // KF
SONG RÙI ĐÓ NẾU CÓ CHỔ NÀO SAI, HOẶC KHÓ HIỂU THÌ NÓI VỚI MÌNH ĐỂ MÌNH GIẢI THÍCH CHO DỄ HIỂU
Bạn ơi !
Mình vừa trả lời
Câu này của bạn rồi mà
Tk cho mình nha
a: Xét ΔDEH vuông tại E và ΔDIH vuông tại I có
DH chung
góc EDH=góc IDH
=>ΔDEH=ΔDIH
b: DE=DI
HE=HI
=>DH là trung trực của EI
c: EH=HI
HI<HF
=>EH<HF
d: Xét ΔDFK có
KI,.FE là đường cao
KI cắt FE tại H
=>H là trực tâm
=>DH vuông góc KF
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D
Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH
=> điểm B, E cách đều 2 mút của đoạn thẳng AH
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
Bạn tự vẽ hình nha!!!
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
C/m:tam giác DHE=DHI
Xét tam giác DHE và tam giác DHI:
Ta có:DH là cạnh chung
EDH=FDH
DEH=DFH(=900)
->ΔDEH=ΔDFH(cạnh huyền-góc nhọn)
C/m:DH là trung trực của EI
Ta có:EH=HI(ΔDEH=ΔDFH)
->DH là trung trực của EI)
a)So sánh:EH vàHF
Xét ΔHIF vuông tại I:
Ta có:HF>HI(Q.hệ giữa góc và cạnh đối diện)
Mà EH=HI
->HF>EH
b)C/m:EK=IF
XétΔEKH và ΔIFH
Ta có:KEH=FIH(=900)
EHK=IHF(2 góc đối đỉnh)
EH=HI(ΔDEH=ΔDFH)
->ΔEHK=ΔIHF(g.c.g)
->EK=IE(2 cạnh tương ứng)
c)C/m:IE//KF
Ta có:DK=DE+EK
DF=DI+IF
Mà DE=DI;EK=EI
->DK=DE
Xét ΔDEI:
Ta có:DE=DI(ΔDEH=ΔDIH)
->ΔDEI cân tại D
->DEI=DIE
Xét ΔDKF:
Ta có:DK=DF(cmt)
->ΔDKF cân tại D
->DKF=DFK
Ta có:DEI=\(\dfrac{180^0-D}{2}\)
DKF=\(\dfrac{180^0-D}{2}\)
->DEI=DKF
Mà 2 góc này ở vị trí đồng vị
->EI//KF