Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự kẻ
tứ giác ADBH có:
D vuông (gt)
Góc HAD vuông ( AH vuông DE )
Góc HBD vuông ( BH vuông DF )
=> tứ giác ADBH là HCN
=> AB=DH; I là trung điểm của AB và DH ( tính chất hcn )
Ta có:
AB=DH (cmt)
I là trung điểm của AB và DH (cmt)
=> IH = IB
Tam giác HIB có:
IH = IB (cmt)
=> tam giác HIB cân tại I
=> góc IHB = góc IBH (2 góc đáy trong tam giác cân )
a: ΔDEF vuông tại D
=>\(DE^2+DF^2+EF^2\)
=>\(EF^2=9^2+12^2=225\)
=>\(EF=\sqrt{225}=15\left(cm\right)\)
Ta có; ΔDEF vuông tại D
mà DM là đường trung tuyến
nên \(DM=\dfrac{EF}{2}=7,5\left(cm\right)\)
b: Xét tứ giác DNMK có
\(\widehat{DNM}=\widehat{DKM}=\widehat{KDN}=90^0\)
=>DNMK là hình chữ nhật
c: Xét ΔDEF có MN//DF
nên \(\dfrac{MN}{DF}=\dfrac{EM}{EF}\)
=>\(\dfrac{MN}{DF}=\dfrac{1}{2}\)
mà \(MN=\dfrac{1}{2}MH\)
nên MH=DF
Ta có: MN//DF
N\(\in\)MH
Do đó: MH//DF
Xét tứ giác DHMF có
MH//DF
MH=DF
Do đó: DHMF là hình bình hành
=>DM cắt HF tại trung điểm của mỗi đường
mà O là trung điểm của DM
nên O là trung điểm của HF
=>H,O,F thẳng hàng
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
a: \(DE=\sqrt{15^2-12^2}=9\left(cm\right)\)
\(S_{DEF}=\dfrac{1}{2}\cdot9\cdot12=6\cdot9=54\left(cm^2\right)\)
b: Xét tứ giác DMHN có
góc DMH=góc DNH=góc MDN=90 độ
nên DMHN là hình chữ nhật
c: Xét tứ giác DHMK có
DK//MH
DK=MH
Do đó: DHMK là hình bình hành
a: EF=5cm
b: DH=2,4cm
c: Xét tứ giác DMHN có
\(\widehat{DMH}=\widehat{DNH}=\widehat{MDN}=90^0\)
Do đó: DMHN là hình chữ nhật
Suy ra: DH=MN=2,4(cm)
\(\text{Xét tam giác EHD vuông tại H có đường trung tuyến HM ứng với cạnh huyền ED}\)
\(\Rightarrow MH=MD=ME=\dfrac{1}{2}ED\)
\(\Rightarrow\)Tam giác HMD cân tại M
\(\Rightarrow\)\(\widehat{MHD}=\widehat{MDH}\)
Tương tự với tam giác DHF vuông tại H ta được \(\widehat{DHN}=\widehat{HDN}\)
Ta có \(\widehat{MHN}=\widehat{MHD}+\widehat{NHD}=\widehat{MDH}+\widehat{NDH}=\widehat{MDN}\)
Suy ra góc MHN có số đo 90 độ
Tick nha bạn 😘
Ta có: ΔDHE vuông tại H(Gt)
mà HM là đường trung tuyến ứng với cạnh huyền DE(Gt)
nên HM=DM=ME
Ta có: ΔDHF vuông tại H(gt)
mà HN là đường trung tuyến ứng với cạnh huyền DF(Gt)
nên HN=DN=FN
Xét ΔNDM và ΔNHM có
ND=NH(cmt)
NM chung
MD=MH(cmt)
Do đó: ΔNDM=ΔNHM(c-c-c)
Suy ra: \(\widehat{NDM}=\widehat{NHM}\)
hay \(\widehat{NHM}=90^0\)