K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ED<EF

=>HD<HF

b: Xét ΔDEI có DE=DI và góc D=60 độ

nên ΔDEI đều

c: Xét tứ giác FEBD có

A là trung điểm chung của FB và ED

=>FEBD là hbh

=>FE//BD

=>BD vuông góc DE

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HDa) Chứng minh tam giác ABD đềub) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HDa) Chứng minh tam...
Đọc tiếp

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2

Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD

a) Chứng minh tam giác ABD đều

b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?

c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1/AB^2+1/AC^2=1/AH^2

 

0
25 tháng 1 2018

A C B D E F M N P H I K O

Ta có: \(\Delta\)ABC đều, D\(\in\)AB, DE\(\perp\)AB, E\(\in\)BC

=> \(\Delta\)BDE có các góc với số đo lần lượt là: 300; 600; 900 => BD=1/2BE

Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)

=> BD=CE. 

Xét \(\Delta\)BDE và \(\Delta\)CEF: ^BDE=^CEF=900; BD=CE; ^DBE=^ECF=600

=> \(\Delta\)BDE=\(\Delta\)CEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD

Xét \(\Delta\)BDE và \(\Delta\)AFD: BE=AD; ^DBE=^FAD=600; BD=AF => \(\Delta\)BDE=\(\Delta\)AFD (c.g.c)

=> ^BDE=^AFD=900 =>DF\(\perp\)AC (đpcm).

b) Ta có: \(\Delta\)BDE=\(\Delta\)CEF=\(\Delta\)AFD (cmt) => DE=EF=FD (các cạnh tương ứng)

=> \(\Delta\)DEF đều (đpcm).

c) \(\Delta\)DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP

Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200 (Kề bù)

=> \(\Delta\)PDM=\(\Delta\)MFN=\(\Delta\)NEP (c.g.c) => PM=MN=NP => \(\Delta\)MNP là tam giác đều.

d) Gọi AH; BI; CK lần lượt là các trung tuyến của \(\Delta\)ABC, chúng cắt nhau tại O.

=> O là trọng tâm \(\Delta\)ABC (1)

Do \(\Delta\)ABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300

Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC

Xét 3 tam giác: \(\Delta\)OAF; \(\Delta\)OBD và \(\Delta\)OCE:

AF=BD=CE

^OAF=^OBD=^OCE      => \(\Delta\)OAF=\(\Delta\)OBD=\(\Delta\)OCE (c.g.c)

OA=OB=OC

=> OF=OD=OE => O là giao 3 đường trung trực \(\Delta\)DEF hay O là trọng tâm \(\Delta\)DEF (2)

(Do tam giác DEF đều)

Dễ dàng c/m ^OFD=^OEF=^ODE=300 => ^OFM=^OEN=^ODP (Kề bù)

Xét 3 tam giác: \(\Delta\)ODP; \(\Delta\)OEN; \(\Delta\)OFM:

OD=OE=OF

^ODP=^OEN=^OFM          => \(\Delta\)ODP=\(\Delta\)OEN=\(\Delta\)OFM (c.g.c)

OD=OE=OF (Tự c/m)

=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của \(\Delta\)MNP

hay O là trọng tâm \(\Delta\)MNP (3)

Từ (1); (2) và (3) => \(\Delta\)ABC; \(\Delta\)DEF và \(\Delta\)MNP có chung trọng tâm (đpcm).

27 tháng 1 2018

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC

=> ΔBDE có các góc với số đo lần lượt là: 300 ; 600 ; 900  

=> BD=1/2BE

Mà BD=1/3BA => BD=1/2AD => AD=BE

=> AB-AD=BC-BE (Do AB=BC)

=> BD=CE. 

Xét ΔBDE và ΔCEF: ^BDE=^CEF=900 ; BD=CE; ^DBE=^ECF=600 => ΔBDE=ΔCEF (g.c.g)

=> BE=CF

=> BC-BE=AC-CF => CE=AF=BD Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600 ; BD=AF => ΔBDE=ΔAFD (c.g.c) => ^BDE=^AFD=900  =>DF⊥AC (đpcm).

b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt)

=> DE=EF=FD (các cạnh tương ứng)

=> Δ DEF đều (đpcm).

c) Δ DEF đều (cmt)

=> DE=EF=FD. Mà DF=FM=EN=DP

=> DF+FN=FE+EN=DE+DP <=> DM=FN=EP

Lại có: ^DEF=^DFE=^EDF=600

=> ^PDM=^MFN=^NEP=1200  (Kề bù)

=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.

d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O

=> O là trọng tâm ΔABC                                                                           (1)

Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác

=> ^OAF=^OBD=^OCE=300

Đồng thời là tâm đường tròn ngoại tiếp tam giác

=> OA=OB=OC

Xét 3 tam giác:

 ΔOAF; ΔOBD và ΔOCE: AF=BD=CE ^OAF=^OBD=^OCE     

=> ΔOAF=ΔOBD=ΔOCE (c.g.c) OA=OB=OC => OF=OD=OE

=> O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF                   (2)

(Do tam giác DEF đều) Dễ dàng c/m ^OFD=^OEF=^ODE=300

 => ^OFM=^OEN=^ODP (Kề bù)

Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM: OD=OE=OF ^ODP=^OEN=^OFM         

=> ΔODP=ΔOEN=ΔOFM (c.g.c) OD=OE=OF (Tự c/m) => OP=ON=OM (Các cạnh tương ứng)

=> O là giao 3 đường trung trực của ΔMNP hay O là trọng tâm ΔMNP             (3)

Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Đề sai rồi bạn

30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

a: Xét ΔDEH vuông tại E và ΔDIH vuông tại I có

DH chung

góc EDH=góc IDH

=>ΔDEH=ΔDIH

b: DE=DI

HE=HI

=>DH là trung trực của EI

c: EH=HI

HI<HF

=>EH<HF

d: Xét ΔDFK có

KI,.FE là đường cao

KI cắt FE tại H

=>H là trực tâm

=>DH vuông góc KF

28 tháng 4 2019

a, Xét 2 tam giác vuông DEM và HEM có:

             ME cạnh chung

            \(\widehat{DEM}\)=\(\widehat{HEM}\)(gt)

=> tam giác DEM=tam giác HEM(CH-GN)

b, vì tam giác DEM=tam giác HEM(câu a) suy ra MD=MH(2 cạnh tương ứng)

c, trong tam giác FKE có: FD,KH là 2 đường cao cắt nhau tại M

=> K,M,H thẳng hàng

D E F M H K

Câu C của bạn làm đúng ko vậy