Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình giúp mik nha
vẽ đường cao EH (H\(\in\)DF)
ta có: \(\widehat{F}\)=180\(^o\)-\(\widehat{E}\)-\(\widehat{F}\)=180-70-60=50
EH=EF.sinF=30.sin50=22,98
sinD=\(\dfrac{EH}{ED}\)\(\Rightarrow\)ED=\(\dfrac{EH}{sinD}\)=\(\dfrac{22,98}{sin60}\)=26,54
DH=\(\sqrt{DE^2-EH^2}\)(pytago)=\(\sqrt{26,54^2-22,98^2}\)=13,28
HF=\(\sqrt{EF^2-EH^2}\)(pytago)=\(\sqrt{30^2-22,98^2}\)=19,29
mà:DF=DH+HF=13,28+19,29=32,57
chu vi \(_{\Delta DEF}\)=DE+EF+DF=26,54+30+32,57=89,11
\(S_{\Delta DEF}\)=\(\dfrac{EH.DF}{2}\)=\(\dfrac{22,98.32,57}{2}\)=374,2293
Xét ΔDEF vuông tại D có
\(DE=DF\cdot\cos60^0\)
\(=15\cdot\dfrac{1}{2}=7.5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔDFE vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow DF^2=15^2-7.5^2=\dfrac{675}{4}\)
hay \(DF=\dfrac{15\sqrt{3}}{2}\left(cm\right)\)
DE=cos E .EF
DE=0,5.15
DE=7,5cm
DF=sinE.EF
DF=\(\dfrac{\sqrt{3}}{2}.15=\dfrac{15\sqrt{3}}{2}\)
Ta có: \(\cos60^o=\dfrac{DE}{E\text{F}}=\dfrac{\text{1}}{2}\Rightarrow DE=\dfrac{E\text{F}}{2}=\dfrac{\text{1}5}{2}=7,5cm\)
Áp dụng định lí Py-ta-go vào ΔDEF vuông tại D
⇒ EF2=DE2+DF2 ⇒ DF2=EF2-DE2=152-7,52=168,75
⇒ \(DF=\dfrac{15\sqrt{3}}{2}\) cm