K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

a, 2 tam giác đồng dạng 

CM:

xét tam giác ta có:    \(2x+3x+4x=56\)(\(x\)là hệ số sao cho \(2x;3x;4x\)là ba cạnh của tam giác ABC)

=) \(x=6\)

tỉ lệ cạnh thì cậu chứng minh đc 2 tam giác đồng dạng nhé

b,vì hai tam đồng dạng nên 

\(\widehat{ABC}=\widehat{DEF}=45^O\)

\(\widehat{BAC}=\widehat{EDF}=105^O\)

tổng 3 góc trong tam giác =180o

thì tính đc \(\widehat{ACB}=\widehat{DFE}=30^O\)

19 tháng 4 2020

sao khi ra x=6 nhân vào 2x=2.6=12=AB

3x=3.6=18=AC

BC=4x=4.6=24

tỉ lệ cạnh \(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}\)

hay \(\frac{12}{3}=\frac{18}{4,5}=\frac{24}{6}\)

ΔABC đồng dạng với ΔDEF

=>AB/DE=BC/EF=AC/DF=k=1/3

=>3/DE=4/DF=1/3

=>DE=9cm; DF=12cm

ΔABC đồng dạng với ΔDEF

=>góc B=góc E=60 độ; góc C=góc F=30 độ

góc A=góc D=180-60-30=90 độ

a: ΔFME vuông tại M

=>MF^2+ME^2=EF^2

=>\(EF=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

Xét ΔFME vuông tại M có 

\(sinE=\dfrac{MF}{EF}=\dfrac{6}{3\sqrt{13}}=\dfrac{2}{\sqrt{13}}\)

\(cosE=\dfrac{ME}{EF}=\dfrac{3}{\sqrt{13}}\)

tan E=2/căn 13:3/căn 13=2/3

cot E=1:2/3=3/2

b: ΔDEF vuông tại F có FM là đường cao

nên FM^2=DM*ME

=>DM=6^2/9=4cm

DE=9+4=13cm

ΔDEF vuông tại F

=>FD^2+FE^2=ED^2

=>FD^2=13^2-(3căn 13)^2=169-117=52

=>FD=2căn 13(cm)

c: Xét ΔDMF vuông tại M có

sin D=FM/FD=6/2căn 13=3/căn 13

cos D=MD/DF=2/căn 13

tan D=3/căn 13:2/căn 13=3/2

cot D=1:3/2=2/3

a) Xét ΔDEF có 

EM là đường phân giác ứng với cạnh DF(gt)

nên \(\dfrac{DM}{DE}=\dfrac{MF}{EF}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{DM}{5}=\dfrac{MF}{6}\)

mà DM+MF=DF(M nằm giữa D và F)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DM}{5}=\dfrac{MF}{6}=\dfrac{DM+MF}{5+6}=\dfrac{DF}{11}=\dfrac{5}{11}\)

Do đó: 

\(\dfrac{DM}{5}=\dfrac{5}{11}\)

hay \(DM=\dfrac{25}{11}cm\)

Vậy: \(DM=\dfrac{25}{11}cm\)

28 tháng 11 2018

Giải bài 45 trang 80 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 45 trang 80 SGK Toán 8 Tập 2 | Giải toán lớp 8

21 tháng 8 2017

Giải bài 45 trang 80 SGK Toán 8 Tập 2 | Giải toán lớp 8

Xét ΔABC có BM là đường phân giác

nên AM/AB=CM/CB

=>AM/3=CM/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)

Do đó: AM=1,5(cm)

Xét ΔABM vuông tại A và ΔDEF vuông tại D có 

AB/DE=AM/DF

Do đó: ΔABM\(\sim\)ΔDEF