Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 6,9cm
b) góc DEF<góc DFE
c) xét tam giác DEF và tam giác DEK có:
KD=DF
GÓC KDE=góc EDF
DE cạnh chung
Do đó tam giác DEF= tam giác DEK
bài này dễ òm
a) Tam giác DEF vuông tại D có:
EF2=DE2+DF2 (định lý pytago)
82=DE2+42
=> DE2=82-42=64-16=48(cm)
=>DE2= căn 48 (xấp xỉ) 6.9
b) Ta có: DE<EF (6.9<8)
=> góc E > góc F (quan hệ góc và cạnh đối diện trong 1 tam giác)
=> góc DEF > góc DFE
c) Xét tam giác DEF và tam giác DEK, có: DK=DF( vì D là trung điểm )
ED là cạnh chung
=> tam giác DEF = tam giác DEK (2 cạnh góc vuông)
a. vì tan giác ABC vuông tại A nên:
Áp dụng định lý Pytago ta có:
BC2 = AB2 + AC2
BC = 6+8
BC2 = 362 + 642
BC = \(\sqrt{100}\)
BC = 10 (cm)
Vậy BC= 10cm
b. Xét 2 tam giác vuông AFD và tam giác vuông ECD, ta có:
A=E= 900
D1 = D2 ( hai góc đối đỉnh)
=> tam giác AFD= tam giác ECD
=> DF=DC( hai cạnh tương ứng)
ko bt đúng hay sai, làm bừa. nếu sai thì tự sửa lại nha
a.vì tam giác ABC vuông tại A
áp dụng định lí py-ta-go,ta có
BC^2=AB^2+AC^2
BC^2=6^2+8^2
BC^2=100
BC=10
b.xét tam giác EDB và tam giác ADB,có
DEB=DAB(=90*)
EBD=ABD
DB chung
suy ra:tam giác EDB=tam giácADB
suy ra ,ED=AD
xét tam giác CED và tam giác FAD,có
CED=FAD
CDE=FDA
DE=DA
suy ra tam giác CED=tam giácFAD
suy ra DF=DC
c.tam giác CFB có
CA là đường cao
FE là đường cao
mà CA cắt FE tại D
SUY RA :D là trực tâm
Ta có: DE = DE = 5 cm
suy ra \(\Delta DEF\) cân tại D
=> góc E = góc F
Xét \(\Delta DEI\) và \(\Delta DFI\) có
DE = DF ( gt)
góc E = góc F
EI = FI ( gt)
Do đó \(\Delta DEI=\Delta DFI\) (c.g.c)
b.
Ta có \(\Delta DEI=\Delta DFI\)
=> góc DIE = DIF
mà DIE + DIF = 180o ( kề bù)
=> góc DIE = DIF = 90o
Tam giác DEI vuông tại I
=> \(DE^2=EI^2+DI^2\)
=> \(DI^2=DE^2-EI^2\)
=> \(DI^2=5^2-3^2\)
=> \(DI^2=16\)
=> \(DI=4\) ( cm)
c.
Xét \(\Delta EHI\) vuông tại H và \(\Delta FJI\) vuông tại J
Có: góc E = góc F ( gt)
EI = FI ( gt)
Do đó: \(\Delta EHI=\Delta FJI\) ( cạnh huyền - góc nhọn)
=> HI = JI ( 2 cạnh tương ứng)
Suy ra tam giác IHJ cân tại I