K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2021

Hình bạn tự vẽ nha : 

a) Xét tam giác AEB và tam giác AFC có :

A là góc chung

E = F = 90° ( gt )

=> tam giác AEB đồng dạng với tam giác AFC ( g - g )

 

 

7 tháng 5 2021

=> AE/AF = AB/AC

=> AE.AC=AF.AB

b) xét tam giác AEF và tam giác ABC có : A chung

AE/AF=AB/AC (cmt)

=> tam giác AEF đồng dạng với tam giác ABC

=> góc AEF = ABC

26 tháng 3 2016

1.c/m tam giac ABE đồng dạng với tam giác ACF

xét 2 tam giác ABE va tam giác ACF có

goc AEB=goc AFC

góc A chung

suy ra tam giác ABE đồng dạng với tam giác ACF(g,g)

2.c/m HE.HB=HC.HF

xét 2 tam giác EHC và FHB có

goc HEC=goc HFB

góc EHC=góc FHB(đ đ)

suy ra 2 tam giác EHC đồng dạng với tam giác FHB

nên ta có EH/FH=HC/HB=EC/FB 

mà EH/FH=HC/HB suy ra EH.HB=HC.HF(ĐPCM)

cho lời nhân xét nhé

26 tháng 3 2016

1. c/m tam giác ACF đồng dạng tam giác ABE

xét tam giác ACF và tam giác ABE

có góc AEB=góc AFC

góc A chung

suy ra tam giác ACF đồng dạng với tam giác ABE(g.g)

2. c/m HE.HB=HC.HF

Xét 2 tam giác HEC và tam giác HFB

Có góc HEC= góc HFB

góc EHC=góc FHB(đ.đ)

suy ra tam giác HEC đồng dạng với tam giác HFB

Nên ta có HE/HF=HC/HB=EC/FB

Suy ra HE.HB=HF.HC(đpcm)

cho mk lời nhận xét nhé

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao

13 tháng 5 2021

mình chỉ làm đựt câu a thui sorry nhabucminh

a/

xét tam giác HBF và tam giác HCE có :

góc BFH= góc CEH=90 độ (gt)

góc FHB= góc EHC (đối)

=>tam giác HBF đồng dạng với tam giác HCE(g.g)

 

 

 
29 tháng 4 2018

A B C D E F H

a.

Xét tam giác AFH và tam giác ADB có:

góc A chung

góc F = H = 90o

Do đó: tam giác AFH~ADB (g.g)

b.

Xét tam giác BHF và tam giác CHE có:

góc BHF = CHE ( đối đỉnh)

góc F = E = 90o

Do đó: tam giác BHF~CHE (g.g)

=> \(\dfrac{BH}{HF}=\dfrac{BF}{HE}\Rightarrow BH.HF=CH.HE\)

c.

Xét tam giác BFH và tam giác CHA có:

góc FBH = HCA ( BHF~CHE)

góc F = H =90o

Do đó: tam giác BGH~CHA (g.g)

d.

Xét tam giác BFD và tam giác BCA có:

góC B chung

\(\dfrac{BF}{BC}=\dfrac{BD}{BA}\left(\Delta BFC\sim\Delta BDA\right)\)

Do đó: tam giác BFD~BCD (g.g)

25 tháng 2 2022

undefined

10 tháng 2 2021

giup mk vs