K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Ta có: ΔABC cân tại A

mà AM là đường cao

nên AM là tia phân giác của góc BAC

hay góc BAM= góc CAM

c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

hay ΔMHK cân tại M

d: Xét ΔAHK có AH=AK

nên ΔAHK cân tại A

e: Xét ΔABC có AH/AB=AK/AC

nên HK//BC

8 tháng 5 2019

c, vì tam giác HMB=tam giác KMC(CH-GN) => \(\widehat{HMB}\)=\(\widehat{KMC}\)

mà \(\widehat{IBM}\)=\(\widehat{KMC}\)(vì ở vị trí đồng vị)

=> \(\widehat{IMB}\)=\(\widehat{IBM}\)(Vì cùng bằng góc \(\widehat{KMC}\))

=> tam giác IBM cân tại I 

A B C M H K P I

27 tháng 4 2023

sai

 

5 tháng 5 2016

A B C K P H I M

c.theo chứng minh câu b là tam giác BMH =tam giác KMC nên ta có góc BMH= góc CMK

vì MK vuông góc với AC và BP vuông góc với AC nên BP//MK(từ vuong góc tới//)

nên => góc PMC = góc KMC(đồng vị)

vậy ta có góc PBC= góc BMH( vì cùng bằng góc KMC)

nên tam giác BIM cân tại I

 

5 tháng 5 2016

a) Vì tam giác ABC là tam giác cân có 

    AM là đường trugn tuyến

nên AM vừa là đường cao vừa là đường phân giác

=> Góc BAM = góc MAC 

Xét \(\Delta AMB\) và \(\Delta MAC\)

góc BAM = góc CAM ( CMT)

AM chung

AMB = góc AMC ( cùng bằng 90 độ )

Vậy Tam giác ABM = tam giác AMC  ( c-g-v-g-n-k)

b) Xét tam giác AHM và tam giác AKM có 

AM chung

Góc AHM =AKM ( = 90 độ) 

HAM =MAK ( cmt câu a) 

nên Tam giác  AHM = tam giác AKM (c-h-g-n)

=> HM = MK

và BHM = MKC , góc B= C

Nên tam giác BHM = KMC 

=> HB = KC

c) Ta có BP VUÔNG GÓC VỚI AC 

và MK vuông góc với AC 

Nên BP// MK 

=> góc PBM = KMC 

Mà KMC = HMB ( vÌ  tam giác BHM = KMC )

Suy ra : PBM = góc HMB

Hay tam giác IBM cân tại I

14 tháng 3 2020

A B C M I II K H I

a) +) Xét tam giác AMB và tam giác AMC có:

BM=MC (M là trung điểm BC)
AB=AC (tam giác ABC cân tại A)

AM chung

=> Tam giác AMB= tam giác AMC (ccc) (đpcm)

+) Tam giác ABC cân tại A (gt) và M là trung điểm BC(gt)

AM vừa là đường cao vừa là đường trung tuyến của tam giác ABC

=> AM là phân giác \(\widehat{BAC}\)(đpcm)

b) Xét tam giác KMB và tam giác HMC có

MB=MC (M là trung điểm BC)

\(\widehat{BKM}=\widehat{CHM}=90^o\)

\(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)

=> Tam giác KMB=tam giác HMC (gcg) (đpcm)

c) Có tam giác KMB= tam giác HMC (cmt)
=> MK=MH (2 cạnh tương ứng (đpcm)

d) 

13 tháng 3 2020

Bạn thử xem trong phần câu hỏi tương tự nhé

a: Xét ΔMAB và ΔMEC có

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔMAB=ΔMEC

b: ΔMAB=ΔMEC

=>góc MAB=góc MEC

=>AB//CE
c: Xét ΔMHA vuông tại H và ΔMKE vuông tại K có

MA=ME

góc HAM=góc KEA
=>ΔMHA=ΔMKE

=>MH=MK

=>M là trung điểm của HK

10 tháng 5 2022

mình chỉ giúp ý d theo mong muốn của bạn thôi :)

Có : AH = AK ( cái này bạn chứng minh ở câu  trên chưa mình không biết; nếu chưa thì bạn chứng minh đi nhé )

=> A thuộc đường trung trực của HK

và MH=MK

=> M thuộc đường trung trực của HK

=> AM là đường trung tực của HK

=> AM ⊥ HK