Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AMN có góc MAN = 1200 suy ra tam giác AMN cân tại A
suy ra góc AMN=góc ANM = 300
Xét tam giác AHM và tam giác AHN
có AH chung
góc AHM = góc AHN = 900
AM=AN (vì tam giác AMN cân tại A)
suy ra tam giác AHM = tam giác AHN ( cạnh huyền-cạnh góc vuông)
suy ra góc MAH=góc HAN (hai góc tương ứng)
suy ra AH là tia phân giác của góc MAN
b) Xét tam giác vuong AHD và tam giác vuông AhE
có AH chung
góc hAD=góc HAE (CMT)
suy ra tam giác AHD = tam giác AHE ( cạnh huyền-góc nhọn) (1)
suy ra AD=AE suy ra tam giác ADE cân tại A
suy ra góc ADE=góc AED=300
suy ra góc ADE = góc AMN = 300
mà góc ADE đồng vị với góc AMN
suy ra DE//MN
c) tam giác HEN vuông tại E suy ra góc EHN = 600
tam giác HDM vuông tại D suy ra góc DHM = 600
mà góc DHM + góc DHE + góc EHN = 1800
suy ra góc DHE = 600 (2)
Từ (1) suy ra DH = HE suy ra tam giác DHE cân tại H (3)
Từ (2) và (3) suy ra tam giác DHE đều
d) Xét tam giác MIN vuoog tại N suy ra góc NIM = 600
góc IAN kề bù với góc NAM
suy ra góc NAI = 600
tam giác ANI có góc AIN=góc ANI=góc IAN = 600
suy ra tam giác ANI đều
suy ra AI = NI = 10cm
Xét tam giác AMN có góc MAN = 1200 suy ra tam giác AMN cân tại A
suy ra góc AMN=góc ANM = 300
Xét tam giác AHM và tam giác AHN
có AH chung
góc AHM = góc AHN = 900
AM=AN (vì tam giác AMN cân tại A)
suy ra tam giác AHM = tam giác AHN ( cạnh huyền-cạnh góc vuông)
suy ra góc MAH=góc HAN (hai góc tương ứng)
suy ra AH là tia phân giác của góc MAN
b) Xét tam giác vuong AHD và tam giác vuông AhE
có AH chung
góc hAD=góc HAE (CMT)
suy ra tam giác AHD = tam giác AHE ( cạnh huyền-góc nhọn) (1)
suy ra AD=AE suy ra tam giác ADE cân tại A
suy ra góc ADE=góc AED=300
suy ra góc ADE = góc AMN = 300
mà góc ADE đồng vị với góc AMN
suy ra DE//MN
c) tam giác HEN vuông tại E suy ra góc EHN = 600
tam giác HDM vuông tại D suy ra góc DHM = 600
mà góc DHM + góc DHE + góc EHN = 1800
suy ra góc DHE = 600 (2)
Từ (1) suy ra DH = HE suy ra tam giác DHE cân tại H (3)
Từ (2) và (3) suy ra tam giác DHE đều
d) Xét tam giác MIN vuoog tại N suy ra góc NIM = 600
góc IAN kề bù với góc NAM
suy ra góc NAI = 600
tam giác ANI có góc AIN=góc ANI=góc IAN = 600
suy ra tam giác ANI đều
suy ra AI = NI = 10cm
a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).
=> AH là đường phân giác góc A (Tính chất tam giác cân).
b) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).
=> AH là đường trung tuyến (Tính chất tam giác cân).
=> H là trung điểm của BC.
=> BH = HC = \(\dfrac{1}{2}\) BC = \(\dfrac{1}{2}\).8 = 4 (cm).
Xét tam giác AHB vuông tại A:
Ta có: \(AB^2=AH^2+BH^2H^2\) (Định lý Pytago).
=> \(5^2=AH^2+4^2.\) => \(AH^2=5^2-4^2=9.\)
=> AH = 3 (cm).
c) Xét tam giác AHD vuông tại D và tam giác AHE vuông tại A:
AH chung.
Góc DAH = Góc EAH (AH là đường phân giác góc A).
=> Tam giác AHD = Tam giác AHE (ch - gn).
=> HD = HE (2 cạnh tương ứng).
=> Tam giác DHE cân tại H.
a.ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến => HB = HC
b.áp dụng định lý pitago ta có:
\(AB^2=AH^2+HB^2\)
\(5^2=AH^2+\left(8:2\right)^2\)
\(AH=\sqrt{5^2-4^2}=3cm\)
c.Xét tam giác vuông BHD và tam giác vuông CHE, có:
BH = CH ( cmt )
góc B = góc C ( ABC cân )
Vậy tam giác vuông BHD = tam giác vuông CHE
=> HD = HE
=> HDE cân tại H
d.ta có AB = AD + DB
AC = AE + EC
Mà BD = CE ( 2 cạnh tương ứng của 2 tam giác bằng nhau )
=> AD = AE
=> ADE cân tại A
Mà A là đường cao cũng là đường trung trực trong tam giác cân ABC cũng là đường trung trực của tam giác cân ADE ( cmx )
Chúc bạn học tốt !!!!
tu ve hinh :
xet tamgiac AMN can tai A (gt) => goc AMN = goc ANM va AM = AN (dn)
AH vuong goc voi MN => goc AHN = goc AHM = 90o (dn)
=> tamgiac AMH = tamgiac ANH (ch - gn)
=> goc NAH = goc MAH (dn) ma AH nam giua AN va AM
=> AH la phan giac cua goc MAN