Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMH và ΔNMB có:
MB=MH (gt)
Góc BMN = HMA (đối đỉnh
MA=MN (gt)
Vậy ΔAMH=ΔNMB. (c.g.c)
=> Góc MBN=MAH=90o(2 góc tương ứng)
Hay NB vuông góc với BC.
b) Vì ΔAMH=ΔNMB nên AH=NB (1)
ΔABH vuông tại H, có AH là đường cao, AB là đường xiên
nên AH<AB(quan hệ đường xiên và hình chiếu trong tam giác vuông). (2)
Từ (1) và (2) suy ra NB<AB.
c) Từ M kẻ MK vuông góc với AB tại K.
ΔBKM có KM là đường cao, MB là đường xiên nên MK<MB mà MB=MH
=> MK<MH => GÓc BAM<MAH(quan hệ giữa góc và cạnh đối diện trong tam giác).
d) câu này mình k chắc lắm
ΔACN có AI và CM là các đường trung tuyến giao nhau tại H nên H là trọng tâm của tam giác.
=> AH là trung tuyến kẻ từ đỉnh A đến NC, mà AI cũng là trung tuyến kẻ từ A đến NC nên 3 điểm A, H, I cùng nằm trên đường trung tuyến của NC
Vậy 3 điểm A, H, I thẳng Hàng.
vì bạn chưa học đường trung bình nên mình k dùng theo tiên đề ơ-clit được, câu d nếu sai thì cho xl nha!
a)Xét tam giác AMH và tam giác MNB
Góc M1= Góc M2 ( đối đỉnh)
MA = MN (gt)
MB = MH ( M là trung điểm của BH)
=> tam giác AMH = tam giác MNB ( cgc)
tam giác AMH = tam giác MNB (cmt)
góc B = góc H (góc tương ứng)
Mà góc H = 90 độ ( kẻ Ah vuông góc với BC )
Vậy góc B = góc H = 90 độ
=> NB vuông góc với BC
b)tam giác AMH = tam giác MNB(câu a)
AH=NB( cạnh tương ứng)
Xét tam giác ABH, có:
AB > AH ( quan hệ giữa cạnh huyền và cạnh góc vuông)
Mà AH=NB(chứng minh trên)
=> AB > NB
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là tia phân giác
b: ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
c: Xét tứ giác ADEH có
B là trung điểm của AE
B là trung điểm của DH
Do đó: ADEH là hình bình hành
Suy ra: AH//DE