Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
i A M N B C
a)
Xét \(\Delta\)ABN và \(\Delta\)ACM có
\(\widehat{BAN}\)chung
AB =AC ( \(\Delta ABC\)cân )
AN = AM ( gt)
\(\Rightarrow\Delta ABN=\Delta ACM\)( c .g . c )
\(\Leftrightarrow\widehat{ABN}=\widehat{ACM}\)
Mà \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{NBC}=\widehat{MCB}\)
Hay\(\widehat{IBC}=\widehat{ICB}\)
\(\Rightarrow\Delta IBC\)cân tại I
b) Ta có AB = AC ( \(\Delta\)ABC cân ) (1)
IB = IC (\(\Delta\)IBC cân ) (2)
Từ (1) và (2) => AI là đường trung trực của BC ( điểm nằm trên đường trung trực của 1 đoạn thẳng thì cách đều 2 đầu mút )
Chúc bạn học giỏi !!!
mình c/m dc rồi nhưng mà ko biết hướng làm có đúng ko, cả bố, mẹ và mình đều là cách làm khác nhau nên muốn tham khảo cách giải của mấy bạn thôi
Bổ sung đề: gọi giao điểm của CM và BN là I
a: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà góc MBC=góc NCB
nên BMNC là hình thang cân
b: Xét ΔMBC và ΔNCB có
MB=NC
góc MBC=góc NCB
BC chung
Do đo ΔMBC=ΔNCB
Suy ra: góc IBC=góc ICB
=>ΔIBC cân tại I
=>AI là đường trung trực của BC