K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2023

giúp với huhu

 

24 tháng 5 2023

Người ta hỏi cái gì vậy nhỉ 

13 tháng 5 2016

a, Ta co :^BAC=90°(∆ABC vuong)

^BAC chan cungBC

           ^BDC=90°(do chan nua dtron duong kinh MC)

^BDC chan cung BC

=> tu giac ADCB noi tiep dtron

b,  ta co: ^ABD =^ACD( tu giac ADCB noi tiep)(1)

Xet tu giac MECD co :

^MEC= 90°( do chan nua duong tron)

^MDC=90°(cmt)

^MEC+^MDC=90°+90°=180°

=>MECD noi tiep duong tron

=>^MEC=^ADC( cung chan MD)(2)

Tu(1),(2)=>^MEC=^ABC(dpcm)

Theo cach minh giai z ko bik dung hay sai va cau c, hinh nhu co chut van de nen minh ko giai dc mong ban thong cam

5 tháng 1 2018

a) ta có: \(OD=OE=OA=\frac{1}{2}AE\)( bán kính đường tròn)

mà \(D\in\left(O;R\right)\)( giả thiết \(AH\)cắt \(\left(O;R\right)\)tại \(D\))

xét \(\Delta ADE\) có \(OD\) \(=\frac{1}{2}AE\) 

\(\Rightarrow OD\) là đường trung tuyến ứng với cạnh  \(AE\)

\(\Rightarrow\Delta ADE\) là \(\Delta\)vuông tại \(D\)

\(\Rightarrow AE\) là cạnh huyền trong tam giác vuông

ta cũng có \(O\)nằm giữa \(A,E\)( tâm đường tròn )

\(\Rightarrow A,O,E\) thẳng hàng

3 tháng 2 2019

A B C D M N O I K P Q H S R L T E G

1) Do DN // AB nên ^DNC = ^BAC (Đồng vị). Mà ^BAC = ^DBC nên ^DNC = ^DBC => Tứ giác BNCD nội tiếp

Suy ra 5 điểm B,O,N,C,D cùng thuộc 1 đường tròn  => ^BND = ^BOD = ^COD = ^CND

Ta có: DN // AB => ^BND = ^ABN. ^CND = ^NAB => ^NBA = ^NAB => \(\Delta\)ANB cân tại N (đpcm).

2) Ta có: ^DCM = ^DNB = ^DNC => \(\Delta\)DMC ~ \(\Delta\)DCN => DC2 = DM.DN. Dễ thấy: DC2 = DI.DA

Suy ra: DM.DN = DI.DA => Tứ giác AIMN nội tiếp => ^IMK = ^IAN = ^IBC => \(\Delta\)MIK ~ \(\Delta\)MKB (g.g)

=> KM2 = KI.KB. Ta lại có: ^KDI = ^IAB = ^KBD => \(\Delta\)IKD ~ \(\Delta\)DKB (g.g) => KD2 = KI.KB

Từ đó: KM2 = KD2 => KM = KD = DM/2. Do G là trung điểm KD nên \(\frac{GM}{GK}=3\) (1)

Gọi giao điểm của tia AD và tia ND là R. Theo hệ quả ĐL Thales: \(\frac{QB}{QM}=\frac{AB}{MR}\) (2)

Nếu ta gọi giao của PI với BC là V, theo phép vị tự thì I là trung điểm của PV. Từ đó suy ra: GM=GR

Mà GD = GK = GM/3 nên DK = MR/3. Lại áp dụng hệ quả ĐL Thales:  \(\frac{IK}{IB}=\frac{DK}{AB}=\frac{MR}{3AB}\) (3)

Từ (1),(2),(3) suy ra: \(\frac{GM}{GK}.\frac{QB}{QM}.\frac{IK}{IB}=3.\frac{AB}{MR}.\frac{MR}{3AB}=1\). Theo đk đủ của ĐL Mélelaus thì 3 điểm Q,I,G tương ứng nằm trên các cạnh BM,BK,KM của \(\Delta\)BKM thẳng hàng (đpcm).

3) Gọi (HCS) cắt (O) tại điểm thứ hai là T. E là giao điểm của OD và BC.

Ta thấy: ^TBD = ^TCB = ^THS = ^THD (Góc tạo bởi tiếp tuyến và dây + Góc nội tiếp) => Tứ giác BHTD nội tiếp

Từ đó: 5 điểm B,H,E,T,D cùng thuộc 1 đường tròn => ^BTD = ^BED = 900 

Mặt khác: ^DTE = 180- ^DBE = 1800 - ^BAC = ^BTC => ^DTE = ^BTC => ^BTD = ^CTE

Suy ra: ^CTE = 900 => T nằm trên đường tròn (CE) cố định. Mà T cũng thuộc (O) cố định.

Nên T là điểm cố định. Do đó: Dây CT của đường tròn (HCS) cố định

=> Tâm L của (HCS) luôn nằm trên đường trung trực của đoạn CT cố định (đpcm).

29 tháng 3 2018

dam nhau a minh anh can het

2 tháng 4 2018

kết qủa là gì