Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Xét tam giác BAC và tam giác BEF có:
^BAC = ^BEF ( = 90o )
cạnh huyền BC = BF
góc nhọn: ^B chung.
=> Tam giác BAC = tam giác BEF ( cạnh huyền - góc nhọn )
b) Ta có: ^BFD + ^DFC = ^BFC
^BCA + ^ACF = ^BCF
hay ^BCA = ^BFE ( Do tam giác BAC = tam giác BEF )
^BCF = ^BFC
=> ^DFC = ^DCF
=> Tam giác DFC cân tại D
=> DF = DC
Xét tam giác BDF và tam giác BDC có:
BF = BC
DF = DC
BD chung
=> Tam giác BDF = tam giác BDC
=> ^FBD = ^CBD
=> BD là tia phân giác của góc FBC
c) Vì Tam giác FBC cân tại B
mà BM trung tuyến
=> BM là đường cao
=> BM vuông góc với FC
Vì AB = BE ( Do tam giác BAC = tam giác BFE )
=> Tam giác ABE cân tại B
=> ^ABE = ( 180o - ^FBC )/2 (1)
Vì Tam giác BFC cân tại B
=> ^BFC = ( 180o - ^FBC )/2 (2)
Từ (1) và (2) => ^ABE = ^BFC
Mà hai góc này vị trí đồng vị
=> AE // FC
Mà BM vuông góc FC
=> BM vuông góc với AC ( đpcm )
# Học tốt #
a) +) Xét ΔBFE vuông tại E và Δ BAC vuông tại A có
BF = BC ( do Δ BFC cân tại B )
FBC : góc chung
⇒ Δ BEF = Δ BAC (ch-gn)
⇒ BE = BA ( 2 cạnh tương ứng)
b) +) Xét Δ BED vuông tại E và ΔBAD vuông tại A có
AD: cạnh chung
BE = BA (cmt)
⇒ Δ BED = Δ BAD (ch-cgv)
⇒ EBD = ABD ( 2 góc tương ứng)
hay CBD =ABD
=> BD là phân giác góc ABC
c) +) Xét ΔBFM và Δ BCM có
BF = BC ( do Δ FBC cân tại B )
\(\widehat{F}=\widehat{C}\) ( do Δ FBC cân tại B )
FM = CM ( do M là trung điểm FC )
⇒ Δ BFM = Δ BCM ( c.g.c)
⇒ \(\widehat{BMF}=\widehat{BMC}\)( 2 góc tương ứng)
+) Mà \(\widehat{BMF}+\widehat{BMC}\)= 180 ( kề bù)
⇒ \(\widehat{BMF}=\widehat{BMC}=90^o\)
+) Lại có BM cắt FC tại M
⇒ BM ⊥ FCB (1)
+) Xét ΔBEA có
BE = BA
=> Δ BEA cân tại B
⇒ \(\widehat{AEB}=\frac{180^o-\widehat{FBC}}{2}\)2 ( tính chất tam giác cân )
Mặt khác \(\widehat{FCB}=\frac{180^o-\widehat{FBC}}{2}\) ( do Δ FBC cân tại B )
⇒ AEB = BCF
Mà 2 góc này ở vị trí đồng vị
⇒ AE // CF (2)
Từ (1) và (2) => BM ⊥ AE
Học tốt __ hơi dài ạ
Xóa giùm t cái hình đi ạ :))
Nộp r ms thấy chx xóa hình
Học tốt ạ
@@@
a) Xét hai tam giác vuông ΔBEF và ΔBAC
có:
BF=BC
(do ΔBFC
cân đỉnh B)
ˆB
chung
⇒ΔBEF=ΔBAC
(cạnh huyền-góc nhọn).
b) ΔBEF=ΔBAC⇒ˆBFE=ˆBCA
(hai tương ứng)
Mà ΔBFC
cân đỉnh B nên: ˆBFC=ˆBCF
ˆBFC−ˆBFE=ˆBCF−ˆBCA
⇒ˆEFC=ˆACF
hay ˆDFC=ˆDCF⇒ΔDFC cân đỉnh D⇒DF=DC
Xét ΔBFD
và ΔBCD
có:
BF=BC
(giả thiết)
BD
chung
DF=DC
(cmt)
⇒ΔBFD=ΔBCD
(c.c.c)
⇒ˆFBD=ˆCBD
(hai góc tương ứng)
⇒BD
là phân giác ˆFBC
.
c) ΔBEF=ΔBAC⇒BE=BA
⇒BF−BA=BC−BE
hay AF=EC
Xét ΔAFM
và ΔECM
có:
FM=CM
(do M là trung điểm cạnh FC)
ˆAFM=ˆECM
(giả thiết)
AF=EC
(cmt)
⇒ΔAFM=ΔECM
(c.g.c)
⇒MA=ME
lại có BA=BE⇒MB là trung trực của AE
⇒MB⊥AE
.
a) Xét 2 tam giác BEF và BAC có :
BF = BC ( Tam giác BCF cân tại B )
Góc B chung
=> Tam giác BEF = BAC ( ch-gn )
b) Vì tam giác BEF = BAC ( cmt )
-> Góc BFE = góc BCA ( 2 góc t/ứng )
Mà tam giác BCF cân tại B
=> BFC = BCF
BFC - BFE = BCF - BCA
\(\Rightarrow\widehat{EFC\:}=\widehat{ACF} hay \widehat{DFC}=\widehat{DCF}\)
=> Tam giác DFC cân tại đỉnh D
=> DF = DC
Xét tam giác BFD và BCD có :
BF = BC ( gt )
BD chung
DF = DC ( cmt )
=> = nhau ( c.c.c)
=> FBD = CBD ( 2 góc t/ứng )
=> BD là tia phân giác của góc ABC
c) Vì tam giác BEF = BAC
=> BE = BA
=> BF - BA = BC - BE hay AF = EC
Xét tam giác AFM và ECM có :
FM = CM ( do M là trg điểm FC )
AFM = ECM ( gt )
AF = EC ( cmt )
=> = nhau ( c.g.c )
=> MA = ME lại có BA = BE
=> MB là trg trực của AE
=> BM vuông góc AE