Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SBMN = \(\frac{1}{2}\)BN.h1 (h1 là đường tam giác BMN cao kẻ từ M)
=\(\frac{1}{2}\)\(\frac{BC}{3}\)\(\frac{2h}{3}\) (h là đường cao tam giác ABC kẻ từ A)
= \(\frac{2}{9}\)SABC
Tương tự cho tam giác AMP và CNP
=> SMNP = SABC - 3SBMN
= SABC - \(\frac{2}{3}\)SABC
= \(\frac{1}{3}\)SABC
= \(\frac{27}{3}\) = 9 cm2
Vẽ MH ^ BC, BK ^ AC.
SAMNB = 3SMNC
Þ SABC = 4SMNC
Ta có: S A B C S B M C = A C M C = 3 2
S B M C S M N C = B C N C = 6 N C ⇒ S A B C S M N C = 9 N C
Mà SABC = 4SCMN Þ NC = 2,25
+) AP // BC => S ( BCP ) = S ( BAC ) = S (1)
+) AP //BC => Theo talet: \(\frac{PN}{NM}=\frac{AN}{NC}=\frac{1}{2}\)( vì AC = 3AN )
Theo menelaus xét trong tam giác PMC
\(\frac{CQ}{PQ}.\frac{NP}{NM}.\frac{BM}{BC}=1\)=> \(\frac{CQ}{PQ}.\frac{1}{2}.\frac{1}{3}=1\)=> CQ = 6PQ => CP = 7 QP
=> \(\frac{S\left(QPB\right)}{S\left(CPB\right)}=\frac{QP}{CP}=\frac{1}{7}\)
=> S ( QPB ) = S/7
Có AB//PM => \(\frac{PI}{IB}=\frac{IN}{IA}\left(1\right)\)
Có AD//BC \(\Rightarrow\frac{DI}{IB}=\frac{IA}{IC}\left(2\right)\)
Từ (1)(2) => \(\frac{IN}{IA}=\frac{IA}{IC}\Rightarrow IA^2=IN\cdot IC\)
Xét \(\Delta PMC\) cắt tuyến BQ. Áp dụng Menelaus
\(\Rightarrow\frac{PQ}{QC}\cdot\frac{CB}{BM}\cdot\frac{MN}{NP}=1\)
\(\Leftrightarrow\frac{PQ}{QC}\cdot\frac{3}{1}\cdot\frac{2}{1}=1\Rightarrow\frac{PQ}{QC}=\frac{1}{6}\Rightarrow\frac{PQ}{PC}=\frac{1}{7}\)
Có \(S_{ABC}=S_{PBC}\Rightarrow S_{PBQ}=\frac{1}{7}S=\frac{S}{7}\)