K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)(Tính chất đường phân giác của tam giác)

\(\dfrac{4.5}{3.5}=\dfrac{7.2}{CD}\)

\(\Leftrightarrow CD=\dfrac{7.2\cdot3.5}{4.5}=5.6cm\)

Vậy: CD=5,6cm

a) Áp dụng định lí Pytago vào ΔABC vuông tại A,ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

20 tháng 3 2021

Mấy câu kia thì s 

 

 

 

11:

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot6\cdot12}{6+12}\cdot\dfrac{1}{2}=4\left(cm\right)\)

12:

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot3\cdot6}{3+6}\cdot\dfrac{1}{2}=\dfrac{3\cdot6}{3+6}=\dfrac{18}{9}=2\left(cm\right)\)

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Vậy: BC=15cm

4 tháng 2 2016

a) ta có BD là pg => DA/DC=AB/AC=15/10=3/2

=> DA/3=DC/2=DA+DC/3+2=AC/5=15/5=3

=> DA=3.3=9 cm

DC=3.2=6 cm

b) ta có BE là pg ngoài=> EA/EC=AB/BC=15/10=3/2

=> EA/3=EC/2=EA-EC/3-2=AC/1=15/1=15

=> EC=15.2=30cm

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BD}{4}=\dfrac{CD}{6}\)

mà BD+CD=BC=4cm(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{4}=\dfrac{CD}{6}=\dfrac{BD+CD}{4+6}=\dfrac{4}{10}=\dfrac{2}{5}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{4}=\dfrac{2}{5}\\\dfrac{CD}{6}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{8}{5}cm\\CD=\dfrac{12}{5}cm\end{matrix}\right.\)

Vậy: \(BD=\dfrac{8}{5}cm;CD=\dfrac{12}{5}cm\)