Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Talet ta có :
+) \(MI//BK\Rightarrow\frac{AM}{AB}=\frac{MI}{BK}=\frac{AI}{AK}\) (1)
+) \(NI//CK\Rightarrow\frac{AN}{AC}=\frac{NI}{CK}=\frac{AI}{AK}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{MI}{BK}=\frac{NI}{CK}\) (3)
Mà : I là trung điểm của MN \(\Rightarrow MI=NI=\frac{MN}{2}\) (4)
Nên từ (3) và (4) \(\Rightarrow BK=CK\)
\(\Rightarrow\) K à trung điểm của BC (đpcm)
Tức ghê á, gửi cái ảnh cũng không được, tôi làm vậy !!
Tóm tắt :
Ta có :
\(\frac{MI}{BK}=\frac{MN}{BC}=\frac{AM}{AB}\) ( Talet ) . Rồi chứng minh hai tam giác đồng dạng AMI và ABK
\(\Rightarrow A,I,K\) thẳng hàng (1)
Lại có :
\(\frac{MI}{KC}=\frac{MN}{BC}=\frac{OM}{OC}\) ( Talet ). Rồi chứng minh hai tam giác đồng dạng MIO và CKO
\(\Rightarrow I,O,K\) thẳng hàng (2)
Từ (1) và (2) suy ra A,I,K,O thẳng hàng.
a: AM=6-2=6cm
AN=12-3=9cm
=>AM/AB=AN/AC
=>MN//BC
b: Xet ΔAKC có NI//KC
nên NI/KC=AI/AK
Xét ΔABK có MI//BK
nên MI/BK=AI/AK
=>NI/KC=MI/BK
c: NI/KC=MI/BK
KC=KB
=>NI=MI
=>I là tđ của MN
hình vẽ
vì \(\frac{AM}{MB}\)= \(\frac{AN}{NC}\) nên MN // BC ( định lý ta- let đảo)
MN//BC
áp dụng hệ quả của định lý ta-let ta có
\(\frac{AM}{MB}\)= \(\frac{MK}{MI}\)(1)
\(\frac{AN }{NC}\)= \(\frac{KN}{IC}\) (2)
từ (1) và (2)
=> \(\frac{MK}{MI}\)= \(\frac{KN}{IC}\)
mà Mi = IC
nên MK = KN => K là trung điểm của MN
Ta có:
\(\dfrac{MK}{BI}=\dfrac{MA}{AB}\) \(\dfrac{NK}{IC}=\dfrac{AN}{AC}\)
\(\dfrac{\Rightarrow MK}{BI}=\dfrac{NK}{CI}\)
Mà \(BI=IC\Rightarrow MK=NK\)
-Chúc bạn học tốt-
AM/AB = AN/AC nên MN//BC (Ta let đảo)
Ta có MK//BI => MK/BI = AK/AI (hệ quả talet)
Tương tự KN/IC = AK/AI => MK/BI = KN/IC mà BI = IC => MK = KN
AM/AB = AN/AC nên MN//BC (Ta let đảo)
Ta có MK//BI => MK/BI = AK/AI (hệ quả talet)
Tương tự KN/IC = AK/AI => MK/BI = KN/IC mà BI = IC => MK = KN
`@ MK //// BI=>[AK]/[AI]=[MK]/[BI]`
`@ KN //// IC=>[AK]/[AI]=[KN]/[IC]`
`=>[MK]/[BI]=[KN]/IC`
Vì `I` là tđ của `BC=>BI=IC`
`=>MK=KN`
`=>K` là tđ `MN` (đpcm)
Chúc mừng cj lên danh hiệu nha:v