K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

A B C H

Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\)

Theo định lí Py ta go ta cs :

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AB^2=12^2+9^2\)

\(\Leftrightarrow AB^2=225\)

\(\Leftrightarrow AB=15cm\)

Xét \(\Delta AHC\) có \(\widehat{AHC}=90^0\)

Theo định lí Py ta go ta có :

\(AC^2=HC^2+AH^2\)

\(\Leftrightarrow AC^2=16^2+12^2\)

\(\Leftrightarrow AC^2=400\)

\(\Leftrightarrow AC=20cm\)

b/ Ta có :

\(HB+HC=BC\)

\(\Leftrightarrow BC=9+16=25cm\)

Lại có :

\(AB^2+AC^2=15^2+20^2=225+400=625cm\)

\(BC^2=25^2=625cm\)

\(\Leftrightarrow AB^2+AC^2=BC^2\)

Theo định lí Py ta go đảo thì tam giác ABC vuông tại A

\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

\(AB=\sqrt{9^2+12^2}=15\left(cm\right)\)

14 tháng 5 2022

\(BC=BH+HC=9+16=25\left(cm\right)\)

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{25^2-20^2}=15\left(cm\right)\)

Áp dụng định lý pitago vào tam giác vuông ABH, có:

\(AB^2=BH^2+AH^2\)

\(\rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)

17 tháng 1 2020

A B C H

TA CÓ BH + HC = BC

=> BC = 9+16=25

THEO ĐỊNH LÝ PITAGO XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ

\(BC^2=AB^2+AC^2\)

\(AB^2=BC^2-AC^2\)

\(AB^2=25^2-5^2\)

......

AH TƯƠNG TỰ

14 tháng 6 2017

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

17 tháng 9 2019

Câu này dễ

AH 12cm

AC13cm

AB13cm

30 tháng 10 2019

25 tháng 1 2022

Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng hệ thức : AH^2 = HB . HC = 16 . 9 

=> AH = 4 . 3 = 12 cm 

25 tháng 1 2022

undefined

Áp dụng hệ thức liên quan tới đường cao vào Δvuông ABC, ta được:

AH²= BH.CH = 9.16 = 144

⇒ AH=12 (cm)