Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9^2+12^2}=15\left(cm\right)\)
\(BC=BH+HC=9+16=25\left(cm\right)\)
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{25^2-20^2}=15\left(cm\right)\)
Áp dụng định lý pitago vào tam giác vuông ABH, có:
\(AB^2=BH^2+AH^2\)
\(\rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm
Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng hệ thức : AH^2 = HB . HC = 16 . 9
=> AH = 4 . 3 = 12 cm
Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\)
Theo định lí Py ta go ta cs :
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=12^2+9^2\)
\(\Leftrightarrow AB^2=225\)
\(\Leftrightarrow AB=15cm\)
Xét \(\Delta AHC\) có \(\widehat{AHC}=90^0\)
Theo định lí Py ta go ta có :
\(AC^2=HC^2+AH^2\)
\(\Leftrightarrow AC^2=16^2+12^2\)
\(\Leftrightarrow AC^2=400\)
\(\Leftrightarrow AC=20cm\)
b/ Ta có :
\(HB+HC=BC\)
\(\Leftrightarrow BC=9+16=25cm\)
Lại có :
\(AB^2+AC^2=15^2+20^2=225+400=625cm\)
\(BC^2=25^2=625cm\)
\(\Leftrightarrow AB^2+AC^2=BC^2\)
Theo định lí Py ta go đảo thì tam giác ABC vuông tại A