Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trên tia đối của MN lấy I sao cho MN=NI
xét tam giác ANM=tam giác CNI(c.g.c)
nên góc MAN=góc NCI(2 góc t/ư); AM=CI=MB(cạnh t/ư)
nên MAC=ACI nên AM //CI suy ra BM//CI
Xét tam giác BMC=tam giác ICM(c.g.c)
suy ra MI=BC(hai cạch t/ư);góc MCB=góc IMC(hai góc t/ư)
suy ra MI//BC và MN=1/2BC
suy ra MN//BC
vì M là TĐ của AB,N là tđ của ac nên:
→MN là đg trung bình của tam giác AbC
→MN //BC,MN=1/2 BC
theo mh nghĩ là vậy.sai thì đừng trách nhé!
Chúng tôi không biết phải làm thế nào.Các bạn làm ơn giúp mình với.Mình cảm ơn các bạn nhiều
xét tam giác abc có
am=mb(gt)
an=nc(gt)
suy ra mn là đường trung bình tam giác abc
suy ra mn//bc(tc đường trung bình tam giác)
và mn=1/2bc suy ra bc=2mn(tính chất đường trung bình tam giác)
Đã học đường trung bình chưa nhỉ ?
nếu chưa thì ta đi cm
trên tia dối tia nm lấy điểm k sao cho nk=nm
=> tam giác amn= tam giác ckn (c-g-c) \(\Rightarrow\hept{\begin{cases}am=bm=kc\\goc.amn=goc.ckn\end{cases}}\)
từ góc amn= góc ckn => am//kc <=> bm//kc =>góc bmc=góc kcn
=> tam giác bmc = tam giác kcn (c-g-c ) (1) => mk=bc=>2mn=bc =>mn=bc/2 (dpcm)
Từ (1) => góc kmc = góc ncb => mk // bc => mn // bc (dpcm)
Trên tia dối tia nm lấy điểm \(k\) sao cho \(nk=nm\)
tam giác \(amn\)= tam giác\(ckn\)⇒{\(am=kc\)
từ góc amn= góc ckn \(\Rightarrow am\\ kc\) <=> \(bm\\ kc\Rightarrow goc.bmc=goc.ckn\)
tam giác bmc = tam giác kcn (1) => mk=bc=>2mn=bc =>mn=\(\frac{bc}{2}\) (dpcm)
Từ (1) => góc kmc = góc ncb => mk // bc => mn // bc (dpcm)