Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABH\)và \(\Delta CAH\)có
\(\widehat{AHB}=\widehat{CHA}=90^0\)
\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với góc HAC)
suy ra: \(\Delta ABH~\Delta CAH\) (g.g)
suy ra: \(\frac{AB}{AC}=\frac{AH}{CH}=\frac{BH}{AH}\)
hay \(\frac{5}{6}=\frac{30}{CH}=\frac{BH}{30}\)
suy ra: \(CH=\frac{6.30}{5}=36\)
\(BH=\frac{5.30}{6}=25\)
B1: Gọi Tam giác ABC vuông tại A có AH là đ/cao chia cạnh huyền thành 2 đoạn HB và HC
AH2=HB x HC =3x4=12
AH=căn 12 r tính mấy cạnh kia đi
B2: Ta có AB/3=AC/4 suy ra AB = 3AC/4
Thế vào cong thức Pytago Tam giác ABC tính máy cái kia
a,theo định lý pytago đảo tính dc A=90
các góc còn lại tính bằng máy tính nha bạn.bạn lấy máy tính bấm \(sin^{-1}\)(cạnh đối/cạnh huyền) là ra góc cần tính nha bạn
b,ah vuông góc bc mà tam giác abc vuông tại a nên
\(AB^2=BH.BC\Rightarrow100=BH.26\Rightarrow BH=\dfrac{50}{13}\)
\(\Rightarrow CH=BC-BH=\dfrac{288}{13}\)
\(\Rightarrow AH^2=BH.CH=\dfrac{14400}{169}\Rightarrow AH=\dfrac{120}{13}\)
tick mik nha bn
Xét \(\Delta ABC\)vuông tại A , ta có :
\(BC^2=AC^2+AB^2\Leftrightarrow BC=\sqrt{AC^2+AB^2}\)
\(\Leftrightarrow BC=\sqrt{5^2+12^2}=13\)(cm)
Xét \(\Delta ABC\)vuông tại A có AH \(\perp\)BC tại H , ta có :
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5^2}{13}=\frac{25}{13}\)(cm)
\(AC^2=HC.BC\Leftrightarrow HC=\frac{AC^2}{BC}=\frac{12^2}{13}=\frac{144}{13}\)(cm)
\(AH^2=HB.HC\Leftrightarrow AH=\sqrt{HB.HC}=\sqrt{\frac{25}{13}.\frac{144}{13}}=\frac{60}{13}\)(cm)
Vậy ...
Nếu bạn muốn đổi ra số thập phân cũng đc nha nhưng mk để phân số cho gọn
........................................................................................Chúc bạn học tốt.................................................................................................
BÀI LÀM:
a) Vì tam giác ABC vuông tại A
Theo định lý Py-ta-go, ta có
BC2 = AB2 + AC2
=> BC2 = 52 + 122
=> BC2 = 25 + 144
=> BC2 = 169
=> BC = 13
Vì M là trung điểm của BC
=> BM = CM = BC / 2 = 13/2 = 6,5
Xét tam giác ABC và tam giác MNC có
Góc BAC = góc NMC = 90o (tam giác ABC vuông tại A, MN vuông góc với BC)
Góc C là góc chung
=> Tam giác ABC đồng dạng với tam giác MNC (g.g)
\(=>\frac{AB}{MN}=\frac{AC}{MC}\)
\(=>\frac{5}{MN}=\frac{12}{6,5}\)
\(=>MN=\frac{6,5.5}{12}=\frac{65}{24}\)
b) Vì tam giác ABC vuông tại A có AH vuông góc với BC
AB2 = BH.BC
\(=>BH=\frac{AB^2}{BC}\)
\(=>BH=\frac{5^2}{13}\)
\(=>BH=\frac{25}{13}\)
Vì BH + HC = BC
=> HC = BC - BH
=> \(HC=13-\frac{25}{13}\)
=> \(HC=\frac{144}{13}\)
Vì tam giác ABC vuông tại A có AH vuông góc với BC
=> AH2 = BH.HC
=> \(AH^2=\frac{25}{13}.\frac{144}{13}\)
=> \(AH^2=\frac{3600}{169}\)
=> \(AH=\sqrt{\frac{3600}{169}}\)
=> \(AH=\frac{60}{13}\)
Cậu chưa cho câu hỏi câu b) nhưng có phải là: "Gọi AH là đường cao thuộc BC. Tính HB, AH và HC", đại loại vậy đúng hăm?
Bài này có thể chia 2 trường hợp nhưng tớ mới làm trường hợp MN cắt AC còn MN cắt AB thì để tớ trả lời sau nhen~
Ta có: BC = HC + HB = 18 + 32 = 50 (cm)
Xét tam giác ABC vuông tại A, đường cao AH, ta có:
AB = \(\sqrt{BC.BH}=\sqrt{50.32}=40\)(cm)
AC = \(\sqrt{BC.HC}=\sqrt{50.18}=30\)(cm)
AH = \(\sqrt{BH.CH}=\sqrt{32.18}=24\)(cm)
=> Tam giác ABC có độ dài 3 cạnh là AB = 40cm; AC = 30cm; BC = 50cm và đường cao AH = 24cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=18\cdot32=576\)
hay AH=24cm
Ta có: BH+CH=BC
nên BC=18+32=50cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=32\cdot50=1600\\AC^2=18\cdot50=900\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=40cm\\AC=30cm\end{matrix}\right.\)