Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Số đo góc ở đỉnh là \(180^0-2\cdot50^0=80^0\)
b: Số đo góc ở đáy là \(\dfrac{180^0-70^0}{2}=55^0\)
c: Vì ΔABC cân tại A
nên \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}\)
Từ dữ liệu bài toán, ta có :
KBC= 10 độ, KCB=30 độ ==> BKC=140 độ ==> AKB + AKC=360-140 = 220 độ (1)
KBC=10 độ ==> ABK=40 độ ==> BAK+AKB=180-40=140 độ (2)
BCK=30 độ ==> ACK=20 độ ==> CAK +AKC=180-20=160 độ (3)
Tam giác ABC cân => góc BAC= 80 ( hay BAK + CAK=80 độ ) (4)
Từ (1) => AKB = 220 - AKC thế vào (2) ==> BAK-AKC= -80 (*)
Từ (4) ==>CAK=80-BAK thế vào (3) ==> -BAK+ AKC= 80 (**)
Giải hệ (*) (**) ==> BAK = 70 độ , AKC =150 độ
Suy nốt góc còn lại AKB = 70 độ ( do AKB= 140-BAK = 70 độ)
Suy ra tam giác ABK cân tại B ( 2 góc ở đáy bằng nhau)
tích nha
Từ dữ liệu bài toán, ta có :
KBC= 10 độ, KCB=30 độ ==> BKC=140 độ ==> AKB + AKC=360-140 = 220 độ (1)
KBC=10 độ ==> ABK=40 độ ==> BAK+AKB=180-40=140 độ (2)
BCK=30 độ ==> ACK=20 độ ==> CAK +AKC=180-20=160 độ (3)
Tam giác ABC cân => góc BAC= 80 ( hay BAK + CAK=80 độ ) (4)
Từ (1) => AKB = 220 - AKC thế vào (2) ==> BAK-AKC= -80 (*)
Từ (4) ==>CAK=80-BAK thế vào (3) ==> -BAK+ AKC= 80 (**)
Giải hệ (*) (**) ==> BAK = 70 độ , AKC =150 độ
Suy nốt góc còn lại AKB = 70 độ ( do AKB= 140-BAK = 70 độ)
Suy ra tam giác ABK cân tại B ( 2 góc ở đáy bằng nhau)
Bài làm
Vì BI là tia phân giác của góc B
=> IBC=B.1/2=80°.1/2=40°
Vì CI là tia phân giác của góc C
=> ICB=C.1/2=40°.1/2=20°
Xét tam gác IBC
Ta có: IBC+ICB+BIC=180° ( Định lí tổng ba góc của tam giác )
hay. 40° + 20°+ BIC =180°
=> BIC=180°-40°-20°
=> BIC= 120°
Vây góc BIC =120°
Cách vẽ hình:
Bước 1: Vẽ hình tam giác ABC có B=80°, C=40°, A=80°
Bước 2: Vẽ tia phân giác của B và C. 2 tia phân giác của góc B và C cắt nhau tại đâu thì điểm đó là điểm I.
Bước 3: Hoàn thành
Theo đề: 1/2 số đo góc A băng 2/3 số đo góc B và bằng số đo góc C
\(\Rightarrow\frac{\widehat{A}}{2}=\frac{2.\widehat{B}}{3}=\widehat{C}\)
\(\Rightarrow\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}\)
Mặt khác tỏng số đo 3 góc trong của tam giác bằng 180o => A+B+C=180o
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{4+3+2}=\frac{180^o}{9}=20^o\)
khi đó góc A=80o; B=60o;C=40o
Vì tổng số đo ba góc A, B, C của \(\Delta ABC\)là 180o (Theo định lí tổng ba góc của một tam)
nên \(\widehat{A}+\widehat{B}+\widehat{C}=180^O\)
Vì \(\Delta ABC\) có \(\frac{1}{2}\)số đo góc A bằng \(\frac{2}{3}\)số đo góc B bằng số đo góc C
nên \(\frac{1}{2}\widehat{A}=\frac{2}{3}\widehat{B}=\widehat{C}\)
\(\Rightarrow\frac{\widehat{A}}{2}=\frac{2\widehat{B}}{3}=\widehat{\frac{C}{1}}\)
\(\Rightarrow\frac{\widehat{A}}{2}\cdot\frac{1}{2}=\frac{2\widehat{B}}{3}\cdot\frac{1}{2}=\widehat{\frac{C}{1}}\cdot\frac{1}{2}\)
\(\Rightarrow\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\widehat{\frac{C}{2}}\)
Áp dụng t/c của dãy TSBN ta có:
\(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\widehat{\frac{C}{2}}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{4+3+2}=\frac{180^O}{9}=20^O\)
Suy ra: \(\widehat{A}=20^o\cdot4=80^o\)
\(\widehat{B}=20^o\cdot3=60^o\)
\(\widehat{C}=20^o\cdot2=40^o\)
Vậy số đo các góc A, B, C của \(\Delta ABC\) lần lượt là 80o, 60o, 40o
TAm giác ABC có A + B +C = 180 độ
=> B + C = 180 - A = 180 - 30 = 150 độ
THay B = 2C ta có :
2C + C = 150 độ => 3 C = 150 độ => C= 50 độ
B = 2C = 2.50độ = 100 độ
o o 2 là gì vậy chẳng hiểu gì hết