Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
a, Ta có:
BM=MC, AM=MD nên tứ giác ABDC là hình bình hành
Mà BAC=90 Vì vậy một hình bình hành có một góc vuông la hình chữ nhật
tứ giác ABDC là hình chữ nhật
b, Vì AM//EC,AE//MC nên tứ giác AECM là hình bình hành
Mà AD=BC có AM=1/2AD, MC=1/2BC nên AM=MC
hình bình hành có hai cạnh bên bằng nhau thì là hình thoi
vậy tứ giác AMCE là hình thoi
c, Để hình chữ nhật ABDC là hình vuông thì AB=AC
Vậy tam giác ABC phải là tam giác vuông cân tại A và khi đó góc B không thể bằng 60 độ
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó:ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: Xét tứ giác AMCE có
AM//CE
AE//CM
Do đó:AMCE là hình bình hành
mà MA=MC
nên AMCE là hình thoi
b: Xét tứ giác AMCE có
AM//CE
AE//CM
Do đó: AMCE là hình bình hành
mà MA=MC
nên AMCE là hình thoi
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Câu 4: Cho tam giác ABC vuông tại A. Biết AB=5cm, BC=13cm. Gọi H, K lần Lượt là trung điểm của AB và BC. Tính độ dài HK
giúp mình nhoa!!
a)Xét tứ giác ABDC :
AM = MD ; BM = MC
=>Tứ giác ABDC là hình bình hành
Mà góc BAC = 90 = >Tứ giác ABDC là hcn
b)Xét tam giác AID :
AH= HI ; AM = MD (gt)
=> HM song song ID ( đường tb)
=>tứ giác BIDC la ht
AC la trung truc AI = > tam giac ABI can tai B
=> AB = BI ma AB = DC ( ABDC la hcn )=> BI = DC
hay BIDC la hinh thang can
c) Ta có góc ACB = góc AHM = góc AEF
góc BAM = góc ABM
mà góc ABM + góc ACM = 90 => góc AEF + góc BAM = 90 độ hay AM vuông góc EF ( đccm)
Bài 1
a/Xét tứ giác BHCD có M đồng thời là trung điểm của cả HD và BC
Do đó BHCD là hình bình hành \(\Rightarrow BH//CD,CH//BD\)
Mặt khác vì ta có H là trực tâm của tam giác ABC nên \(BH\perp AC,CH\perp AB\)
Suy ra \(BD\perp AB,CD\perp AC\Rightarrow\Delta ABD,\Delta ACD\)là tam giác vuông
b/Xét \(\Delta ABD,\Delta ACD:\widehat{ABD}=\widehat{ACD}=90^0\);I là trung điểm của cạnh huyền chung AD
Suy ra \(IA=IB=IC=ID\)
Bài 2a/Vì AD=CD(gt) nên D nằm trên trung trực của đoạn AC suy ra \(\widehat{DAC}=\widehat{ECA}=90^0-60^0=30^0\)
Suy ra \(\widehat{BAD}=90^0+\widehat{DAC}=120^0\)
b/Trước hết ta thấy ABCD đã là hình thang,nên ta đi chứng minh \(\widehat{BCD}=\widehat{ABC}=60^0\)
Ta có \(\widehat{BCD}=\widehat{DCA}+\widehat{ACB}=\widehat{DAC}+30^0=30^0+30^0=60^0\)
Vậy ABCD là hình thang cân
c/Ta có \(\Delta BCE:AE=BE,\widehat{ABE}=60^0\Rightarrow AE=BE=AB\)
\(\widehat{ADE}=\frac{1}{2}.\widehat{ADC}=60^0;\widehat{BAD}=120^0=\widehat{BED}\)
Suy ra ABED là hình bình hành
Mà ta còn có AB=EB
Vậy ABED là hình thoi
Tại sao lại tam giác ABCD. Đề sai rồi
cho tam giác ABC