K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2020

xin lỗi mình học lớp 5

cậu học lớp mấy vậy?

29 tháng 1 2020

A B C D E

Xét \(\Delta ABD\)có \(\widehat{A}\)tù \(\Rightarrow BA< BD\)(1); \(\widehat{ADB}< 90^o\)

\(\Rightarrow\widehat{BDE}>90^o\)\(\Rightarrow\Delta BDE\)tù tại D \(\Rightarrow BD< BE\)(2); \(\widehat{BED}< 90^o\)

\(\Rightarrow\widehat{BEC}>90^o\)\(\Rightarrow\Delta BEC\)tù tại E \(\Rightarrow BE< BC\)(3)

Từ (1), (2), (3) \(\Rightarrow BA< BD< BE< BC\left(đpcm\right)\)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Xét tam giác BAD:

+        Góc A tù (góc > 90°) nên cạnh BD là cạnh lớn nhất trong tam giác này (đối diện với góc A).

Nên BD > BA.

+        Góc A tù nên góc ABD và góc ADB là góc nhọn → góc BDE là góc tù (ba điểm A, D, E thẳng hàng hay góc ADE =180°). Vậy BE (đối diện với góc BDE) > BD.

Tương tự, ta có:

+        Góc BDE là góc tù nên góc DBE và góc DEB là góc nhọn → góc BEG là góc tù. Vậy BG > BE.

+        Góc BEG là góc tù nên góc EBG và góc EGB là góc nhọn → góc BGC là góc tù. Vậy BC > BG.

Vậy BA < BD <BE < BG < BC.

Hay các đoạn thẳng BA, BD, BE, BG, BC theo thứ tự tăng dần là: BA, BD, BE, BG, BC. 

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Ta có \(\widehat {BAC}\)  là góc tù nên \(\widehat {ADE},\widehat {AED}\)  là các góc nhọn

\( \Rightarrow \widehat {DEC}\) là góc tù

\( \Rightarrow DE < DC\) (quan hệ giữa góc và cạnh đối diện trong tam giác DEC). (1)

 Xét tam giác ADC có:

\(\widehat {DAC}\) là góc tù nên \(\widehat {ADC},\widehat {ACD}\) là các góc nhọn

\( \Rightarrow \widehat {BDC}\) là góc tù.

\( \Rightarrow DC < BC\) (quan hệ giữa góc và cạnh đối diện trong tam giác BDC) (2)

Từ (1) và (2) suy ra: BC > DE

3 tháng 6 2020

Giải thích các bước giải:

a)Xét tam giác BAD và tam giác BED:

BD:cạnh chung

^ABD=^EBD (vì BD là tia phân giác của ^ABC)

AB=BE(gt)

=>tam giác BAD=tam giác BED(c.g.c)

b)Từ tam giác BAD=tam giác BED(cmt)

=>AD=DE(cặp cạnh t.ứ)

và ^BAD=^BED(cặp góc .tứ),mà ^BAD=900 (^BAC=900)=>^BED=900

Xét tam giác DFA vuông ở A và tam giác DCE vuông ở E có:

AD=AE (cmt)

^ADF=^EDC (2 góc đối đỉnh)

=>tam giác DFA=tam giác DCE(cgv-gnk)

=>DF=DC(cặp cạnh t.ứ)

=>tam giác DFC cân tại D (dấu hiệu nhận biết tam giác cân)

c)Từ tam giác DFA=tam giác DCE (cmt)

=>AF=CE(cặp cạnh t.ứ)

Ta có: BE+CE=BC

       BA+AF=BF

mà AF=CE(cmt),AB=AE(gt)

=>BC=BF

=>tam giác BFC cân tại B (dấu hiệu nhận biết tam giác cân)

=>^BCF=1800−FBC21800−FBC2 (tính chất tam giác cân)  (1)

Vì AB=AE(gt)

=>tam giác ABE cân tại B (dấu hiệu nhận biết tam giác cân)

=>^BEA=1800−ABE21800−ABE2 (tính chất tam giác cân)  (2)

Từ (1);(2);lại có ^ABE=^FBC

=>^BCF=^BEA,mà 2 góc này nằm ở vị trí đồng vị

=>AE//CF(dấu hiệu nhận biết 2 đg thẳng song song)

29 tháng 1 2022

4) a.Ta có: 

\(BA=BE\)

\(ABD=DBE\rightarrow\Delta ABD=\Delta EBDchungBD\)

b) Từ câu a \(\rightarrow BED=BAD=90^o\)

\(\rightarrow DE\text{⊥}BC\)

c) Ta có :

\(BKD=ADK=ACB+DEC=90^o\)

\(BKD=ACB\)

\(\text{Δ B D K = Δ B D C ( g . c . g )}\)

\(BK=BC\)

 

undefined

5)

Ta có:

\(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Mà \(8< 9\Rightarrow2^{300}< 3^{200}\)

29 tháng 1 2022

Bài 5:

\(2^{300}=\left(2^3\right)^{100}=8^{100}\\ 3^{200}=\left(3^2\right)^{100}=9^{100}\\ Vì:8< 9\Rightarrow8^{100}< 9^{100}\\ \Rightarrow2^{300}< 3^{200}\)

a.Ta có:

⎧⎪⎨⎪⎩BA=BEˆABD=ˆDBEchungBD→ΔABD=ΔEBD(c.g.c){BA=BEABD^=DBE^chungBD→ΔABD=ΔEBD(c.g.c)

b.Từ câu a→ˆBED=ˆBAD=90o→BED^=BAD^=90o

→DE⊥BC→DE⊥BC

c.Ta có:

ˆBKD+ˆADK=ˆACB+ˆDEC=90oBKD^+ADK^=ACB^+DEC^=90o

→ˆBKD=ˆACB→BKD^=ACB^

→ΔBDK=ΔBDC(g.c.g)→ΔBDK=ΔBDC(g.c.g)

→BK=BC→BK=BC

image  

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: Ta có: ΔBAD=ΔBED

nên \(\widehat{BAD}=\widehat{BED}=90^0\)

hay DE\(\perp\)BC

c: Xét ΔADK vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADK}=\widehat{EDC}\)

Do đó: ΔADK=ΔEDC

Suy ra: AK=EC

Ta có: BA+AK=BK

BE+EC=BC

mà BA=BE

và AK=EC

nên BK=BC

2 tháng 12 2023

Bạn có thể vẽ hình đc ko?