Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
'
Áp dụng đinh lý Py ta go ta có :
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow10^2=6^2+AB^2\)
\(\Leftrightarrow100-36=AB^2\Leftrightarrow64=AB^2\Leftrightarrow AB=8\)cm
Vì CM là đường trung tuyến
=> AM = BM
Nên : \(2BM=AB\Leftrightarrow2BM=8\Leftrightarrow BM=4\)cm
b, Xét \(\Delta AMC\)và \(\Delta BMD\)ta có :
AM = BM (cmt)
CM = DM (gt)
^AMC = ^BMD (đ.đ)
=>\(\Delta\) AMC = \(\Delta\)BMD ( c.g.c)
P/S: Dạo này đọc hình chán quá )):
a, Theo câu b ta có : \(\hept{\begin{cases}AC=BD\\CM=DM\end{cases}}\)
Từ đó bđt trên tương đương với
\(BD+BC>CM+DC=CD\)
Hoàn toàn đúng theo bđt tam giác ( đpcm )
a, xét tam giác ABC vuông tại A (gt)
=> AB^2 + AC^2 = BC^2 (đl Pytago)
AC = 6 cm; BC = 10 cm
=> AB^2 = 10^2 - 6^2
=> AB^2 = 100 - 36
=> AB^2 = 64
=> AB = 8 do AB > 0
\(a.
\)Xét \(\Delta ABC\)vuông tại A theo địnhlý Py - ta - go, ta có: \(BC^2=AC^2+AB^2\)
\(\Rightarrow\)\(AB^2=BC^2-AC^2\)
\(\Rightarrow\) \(AB^2=10^2-6^2=64\)
\(\Rightarrow\) \(AB=\sqrt{64}=8\)(cm)
Vì CM là dường trung tuyến \(\Rightarrow\)BM = MA \(\Rightarrow\)\(BM=MA=\frac{AB}{2}=\frac{8}{2}=4\) (cm)
\(b.\) Xét \(\Delta CAM\) và \(\Delta DBM\)có: \(MC=MD\) ( gt )
\(\widehat{AMC}=\widehat{DMB}\) ( đối đỉnh )
\(AM=BM\) ( CM là dường trung tuyến)
Do đó \(\Delta CAM=\Delta DBM\)( c.g.c)
\(c.\)Xét \(\Delta DBC\)theo Bất đẳng thức tam giác, ta có: \(DB+BC>DC\)
mà \(CM=MD\)nên \(DC=2CM\)
\(BD=AC\) ví \(\Delta CAM=\Delta DBM\)
\(\Rightarrow\)đpcm
Hình tự vẽ nha!
a, Xét tam giác ABC vuông tại A có: BA\(\perp\)CA
\(\Rightarrow\) BC2 = AB2 + AC2 (định lý Pytago)
\(\Rightarrow\) AC2 = BC2 - AB2
AC2 = 102 - 62
AC2 = 100 - 36
AC2 = 64
AC = \(\sqrt{64}\) = 8 (cm)
b, Xét tam giác AMC và tam giác BMD có:
AM = BM (gt)
góc AMC = góc BMD (2 góc đối đỉnh)
MC = MD (gt)
\(\Rightarrow\) \(\Delta\)AMC = \(\Delta\)BMD (cgc)
\(\Rightarrow\) AC = BD (2 cạnh tương ứng)
Phần c để mk tính tiếp, vì hình nó rối quá
Chúc bn học tốt!
bài 4 là đáp án nhé bạn !!!
https://scontent-hkg3-1.xx.fbcdn.net/v/t1.0-9/18301825_167653407097467_8439365778947426652_n.jpg?oh=c1d14ed5e4332d43035bc329c012ea9c&oe=59B686B1