Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tam giác ABC vuông tại C (gt)
=> góc ACB = 90 (đn)
có ME _|_ AC (gt) => góc MEC = 90 (đn)
MF _|_ BC (gt) => góc MFC = 90 (đn)
xét tứ giác EMFC
=> EMFC là hình chữ nhật (dấu hiệu)
=> CM = EF (tính chất)
b, M là trung điểm của AB (Gt)
=> CM là trung tuyến (đn/)
tam giác ABC vuông tại C (Gt)
=> CM = AM = AB/2 (đl)
xét tam giác AME và tam giác CME có : EM chung
góc MEA = góc MEC = 90
=> tam giác AME = tam giác CME (ch-cgv)
=> AE = EC (đn)
E thuộc AC
=> E là trung điểm của AC (đn)
c, có ME _|_ AC
=> MD _|_ AC ; xét tứ giác ADCM
=> ADCM là hình thoi (dấu hiệu)
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90
=> BEMF là hình chữ nhật (dh)
b, MF _|_ BA
BC _|_ AB
=> MF // BC
M là trung điểm của AC (gt)
=> MF là đường trung bình của tam giác ABC (đl)
=> F là trung điểm của AB
F Là trung điểm của MN
=> BMAN là hình bình hành (dh)
MN _|_ AB
=> BMAN là hình thoi (dh)
c,
S BEMF = 6X10= 60
ht
a: Xét tứ giác AMIN có
\(\widehat{AIM}=\widehat{AIN}=\widehat{NAM}=90^0\)
Do đó: AMIN là hình chữ nhật
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
HÌNH BẠN TỰ VẼ NHA!
a) Chứng minh tứ giác CFME là hình chữ nhật và chứng minh CE=EF
*Xét tứ giác CFME có:
góc CEM=góc ECF=góc CFM=90 độ (gt)
\(\Rightarrow\)tứ giác CFME là hình chữ nhật
*Ta cáo: CFME là hình chữ nhật (chứng minh trên)
\(\Rightarrow\)EF=CM
b) Chứng minh Elà trung điểm AC.
*Ta có:EM vuông góc với AC (gt).
AC vuông góc với CB (tam giác ABC vuông tại C).
\(\Rightarrow\)EM song song với CB.
*Xét tam giác ABC có:
EM song song với CB(chứng minh trên).
MA=MB(M là trung điểm của AB).
\(\Rightarrow\)EM là đường trung bình của tam giác ABC.
\(\Rightarrow\)AE=EC.
\(\Rightarrow\)E là trung điểm của AC.