K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2020

hình tự vẽ nhé 

5 tháng 5 2020

ok banj

5 tháng 5 2021

Mình cũng đang định hỏi nhưng ko bik nữa

 

11 tháng 5 2016

a) Xét tam giác CED và tam giác CAB có:

góc C chung

góc CED = góc CAB = 90 độ

=> Tam giác CED đồng dạng tam giác CAB.

b) Theo định lí Pythago, ta sẽ có: AB2+AC2=BC2 <=> BC=15 (cm)

Tam giác CED đồng dạng tam giác CAB (chứng minh trên)

=> \(\frac{CD}{CB}=\frac{ED}{AB}=>\frac{CD}{DE}=\frac{CB}{AB}=>\frac{CD}{DE}=\frac{15}{9}=\frac{5}{3}\)

c) AD là phân giác góc BAC. Theo tính chất đường phân giác trong tam giác, ta có:

\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{9}{12}=\frac{3}{4}\)

\(=>\frac{BD}{3}=\frac{CD}{4}=\frac{BD+CD}{7}=\frac{BC}{7}=\frac{15}{7}\)

\(=>CD=\frac{15\times4}{7}=\frac{60}{7}\left(cm\right)\)

Mà \(\frac{CD}{DE}=\frac{5}{3}=>\frac{\frac{60}{7}}{DE}=\frac{5}{3}=>DE=\frac{36}{7}\left(cm\right)\)

Theo định lí Pythago trong tam giác vuông DEC vuông tại E, ta có:

DE2+EC2=DC2 => EC=48/7 (cm)

=> AE=AC-EC=12-48/7=36/7 (cm)

Kẻ DK vuông góc AB

Ta có: Tứ giác KDEA là hình chữ nhật (có 3 góc vuông)

=> DK=AE=36/7 (cm)

Vậy diện tích tam giác ABD là:

\(\frac{AB\times DK}{2}=\frac{9\times\frac{36}{7}}{2}=\frac{162}{7}\left(cm^2\right)\)

11 tháng 5 2021

Bạn có bt vẽ hình và viết giả thiết ,kết luận ko 

Gửi cho mình với

a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔHAC(g-g)

b) Xét tứ giác AKHI có

\(\widehat{KAI}=90^0\)

\(\widehat{HIA}=90^0\)

\(\widehat{HKA}=90^0\)

Do đó: AKHI là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HI là đường cao ứng với cạnh huyền AB, ta được:

\(AI\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HK là đường cao ứng với cạnh huyền AC, ta được:

\(AK\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

29 tháng 8 2023

xàm vãi câu a) có 1 góc mà g-g

 

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{ACB}\) chung

Do đó: ΔABC đồng dạng với ΔHAC

b: Xét ΔKHB vuông tại K và ΔKAH vuông tại K có

\(\widehat{KHB}=\widehat{KAH}\left(=90^0-\widehat{B}\right)\)

Do đó: ΔKHB đồng dạng với ΔKAH

=>\(\dfrac{KH}{KA}=\dfrac{KB}{KH}\)

=>\(KH^2=KA\cdot KB\)

c: Ta có: ΔAHC vuông tại H

=>\(HC^2+HA^2=AC^2\)

=>\(HA^2=10^2-8^2=36\)

=>\(HA=\sqrt{36}=6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(HB=\dfrac{6^2}{8}=4,5\left(cm\right)\)

BC=BH+CH

=4,5+8

=12,5(cm)

Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot12,5\cdot6=3\cdot12,5=37,5\left(cm^2\right)\)

30 tháng 3 2018

a)  Xét   \(\Delta HBA\) và    \(\Delta ABC\)  có:

\(\widehat{AHB}=\widehat{CAB}=90^0\)

\(\widehat{ABC}\)    CHỤNG

suy ra:     \(\Delta HBA~\Delta ABC\)

b)   Áp dụng định lý Pytago vào tam giác vuông  ABC  ta có:

          \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=12^2+16^2=400\)

\(\Leftrightarrow\)\(BC=\sqrt{400}=20\)cm

     Áp dụng hệ thức lượng trong tam giác vuông ta có:

            \(AH=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6\)

           \(BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2\)

30 tháng 3 2018

@@ câu c sao bạn?