K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔACE vuông tạiC và ΔAKE vuông tại K có

AE chung

góc CAE=góc KAE

Do đó: ΔACE=ΔAKE

Suy ra: AC=AK và EC=EK

=>AE là đường trung trực của CK

hay AE\(\perp\)CK

b: Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)

nên ΔEAB cân tại E

mà EK là đường cao

nên K là trung điểm của AB

c: AC=AK=KB 

mà EB>KB

nên EB>AC

a: XétΔACE vuông tại C và ΔAKE vuông tại K có

AE chung

\(\widehat{CAE}=\widehat{KAE}\)

Do đó: ΔACE=ΔAKE

=>EC=EK

=>E nằm trên đường trung trực của CK(1)

Ta có: ΔACE=ΔAKE

=>AC=AK

=>A nằm trên đường trung trực của CK(2)

Từ (1) và (2) suy ra AE là đường trung trực của CK

=>AE\(\perp\)CK

b: Ta có: ΔCAB vuông tại C

=>\(\widehat{CAB}+\widehat{CBA}=90^0\)

=>\(\widehat{CBA}=90^0-60^0=30^0\)

Ta có: AE là phân giác của góc CAB

=>\(\widehat{CAE}=\widehat{BAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)

Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)

nên ΔEAB cân tại E

Ta có: ΔEAB cân tại E

mà EK là đường cao

nên K là trung điểm của AB

=>KA=KB

c: Ta có: EB=EA

EA>AC(ΔAEC vuông tại C)

Do đó: EB>AC

d: Gọi giao điểm của BD và AC là H

Xét ΔHAB có

AD,BC là các đường cao

AD cắt BC tại E

Do đó: E là trực tâm của ΔHAB

=>HE\(\perp\)AB

mà EK\(\perp\)AB

và HE,EK có điểm chung là E

nên H,E,K thẳng hàng

=>AC,BD,KE đồng quy tại H

a) Vì AE là phân giác BAC 

=> CAE = BAE 

Xét ∆ vuông ACE và ∆ vuông AKE ta có : 

AE chung 

CAE = BAE 

=> ∆ACE = ∆AKE (ch-gn)

=> AC = AK ( tương ứng )

=> ∆ACK cân tại A

Vì AE là phân giác BAC trong ∆ACK 

=> AE là trung trực ∆ACK

=> AE \(\perp\)CK