Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(AB > AC \Rightarrow \widehat {ABC} < \widehat {ACB}\)( quan hệ giữa góc và cạnh đối diện trong tam giác ABC)
\(\begin{array}{l} \Rightarrow {180^0} - \widehat {ABD} < {180^0} - \widehat {ACE}\\ \Rightarrow \widehat {ABD} > \widehat {ACE}\end{array}\)
Vì BD= BA nên tam giác ABD cân tại B \( \Rightarrow \widehat {ABD} = {180^0} - 2\widehat {ADB}\)
Vì CE = CA nên tam giác ACE cân tại C \( \Rightarrow \widehat {ACE} = {180^0} - 2\widehat {AEC}\)
\(\begin{array}{*{20}{l}}{ \Rightarrow {{180}^0} - 2\widehat {ADB} > {{180}^0} - 2\widehat {AEC}}\\{ \Rightarrow \widehat {ADB} < \widehat {AEC}}\\{Hay{\mkern 1mu} \widehat {ADE} < \widehat {AED}}\end{array}\)
b) Xét tam giác ADE ta có : \(\widehat {ADB} < \widehat {AEC}\)
\( \Rightarrow AD > AE\)(Quan hệ giữa cạnh và góc đối diện trong tam giác).
tam giác ABC vuông tại A (gt)
=> AB^2 + AC^2 = BC^2 (định lý Pytago)
mà AB = 6; BC = 10
=> 6^2 + AC^2 = 10^2
=> AC^2 = 100 - 36
=> AC^2 = 64
=> AC = 8 do AB > 0
vậy_
Cho tam giác ABC vuông tại A có AB=6cm,BC=10cm
a.Tính độ dài cạnh AC và so sánh các góc của tam giác ABC
b.Trên tia đối AB lấy điểm D sao cho AD=AB.Gọi K là trung điểm của cạnh BC,đường thẳng DK cắt AC tại M.Chứng minh BC=CD và tính độ dài đoạn thẳng AM
c.Đường trung trực d của đoạn thẳng ac cắt đường thẳng DC tại Q.Chứng minh ba điểm B,M,Q thẳng hàng.
giải :
tam giác ABC vuông tại A (gt)
=> AB^2 + AC^2 = BC^2 (định lý Pytago)
mà AB = 6; BC = 10
=> 6^2 + AC^2 = 10^2
=> AC^2 = 100 - 36
=> AC^2 = 64
=> AC = 8 do AB > 0
vậy ...
a) Ta có: (hai góc kề bù)
(hai góc kề bù)
mà (hai góc ở đáy của ΔABC cân tại A)
nên
Xét ΔABD và ΔACE có
AB=AC(ΔABC cân tại A)
(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(hai cạnh tương ứng)
Ta có: AD=AE(cmt)
nên A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MD=ME(M là trung điểm của DE)
nên M nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của DE
hay (đpcm)
a) xét 2 tam giác vuông ABM VÀ ACM, có:
AB=AC ( ABC CÂN)
góc b = góc c (___nt____)
BM=CM ( BD=EC; DM=ME)
=> TAM GIÁC ABM = T/GIÁC ACM
=>góc amb = góc amc (2 góc tuog ứng)
mà amb và amc là 2 góc kề bù
=> amb = amc = 90 độ hay am vuông góc với bc
b) ta có ab = ac vì t/giác abc cân tại a
xét t/giác adm và t/giác ame, có
am chung
góc amd=góc ame (cmt)
dm=me ( gt)
=> t/giác ADM = t/giác AME
=> AD=AE ( 2 cạnh tương ứng )
a, \(\Delta AMB=\Delta AMC(c.c.c)\Rightarrow\widehat{AMB}=\widehat{AMC}\)
Ta lại có : \(\widehat{AMB}+\widehat{AMC}=180^0\)=> \(\widehat{AMB}=90^0\)
Vậy \(AM\perp BC\)
b, Hình chiếu MD = ME nên đường xiên AD = AE . Hình chiếu MD < MB nên đường xiên AD < AB . Ta có : AD < AB = AC
Vì ΔBAC vuông tại B
nên AB<AC
góc ACB<90 độ
=>góc ACD>90 độ
=>AC<AD
góc ACD>90 độ
=>góc CDA<90 độ
=>góc ADE>90 độ
=>AD<AE
=>AB<AC<AD<AE
vẽ hình hộ e với ạ